養殖排水を対象とした元素硫黄ベースの混合栄養性脱窒システムの開発

長岡技術科学大学大学院 非会員 〇加藤由都 正会員 渡利高大 幡本将史 山口隆司

1. はじめに

閉鎖循環型養殖水槽内における硝酸塩 (NO:-N) の 蓄積は、魚類の生育に悪影響をもたらす. 元素硫黄 (Sº) を電子供与体とする独立栄養性硫黄脱窒 (Sulfurbased Autotrophic Denitrification, SAD) は, 低 TOC/Nitrogen ration (C/N 比) である養殖排水の処理に 適しており、安価かつ低毒性で、温室効果ガスである 亜酸化窒素 (N₂O) の発生が抑制される. 一方, SAD で は反応に伴い多量の水素イオン (H+) が生成されるた め, 処理水の pH が大きく低下する 1). この課題に対し て、我々は排水に有機炭素源を添加し、SADと従属栄 養性脱窒 (Heterotrophic Denitrification, HD) を併用し た混合栄養性脱窒 (Mixotrophic denitrification, MD) に 着目した. この手法では、HDが SADによって消費さ れるアルカリ度を補完することで、酸と塩基の平衡を 維持する. 我々が知る限りでは、養殖排水を対象とし た SAD と HD を併用した MD の事例はない. そこで, 本研究では処理水の pH 低下を抑制した MD の機能を 有する USB (Up-flow Sludge Blanket) リアクターの開 発を目的として、異なる C/N 比の模擬養殖排水を用い た連続処理性能を評価した.

2. 実験方法

2-1. 実験装置及び運転条件

図1に、USB リアクターの概要図を示す. 本実験では、高さ30.0 cm、直径5.0 cm、有効容積250 mL のバイオカラムを5 基用いた (R1-R5). 各リアクターには、超音波処理した嫌気性グラニュール100 mL (35.1 g-MLVSS/L, VSS/SS=0.67) と元素硫黄 S⁰(和光純薬)を40g 充填した. 各リアクターのC/N 比は、0(R1、対照系)、0.5(R2)、1.0(R3)、2.0(R4)、3.0(R5) に設定した. 室温は空調を用いて30°Cに設定した. HRT は5.0hである.

流入水は、硝酸ナトリウム (和光純薬) により NO_3 -N 30 mg/L とした人工海水と酢酸ナトリウム溶液とした、2 種類の流入水をリアクター下部で混合させ、各リアクターにおける設定 C/N 比になるように調整した.

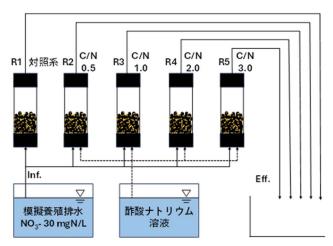


図 1. リアクターの概略図

2-2. 水質分析

水質サンプルは各リアクターの流入水 (Inf.) と流 出部 (R1 Eff., R2 Eff., R3 Eff., R4 Eff., R5 Eff.) から 採取した. pH と水温は, pH メーター (MM-42DP, 東 亜 DKK) を用いて測定した. ORP は, ORP メーター (MM-40DP, 東亜 DKK) を用いて測定した. 塩分濃度 は,塩度屈折計 (MASTER-S/Milla, Atago) を用いて測 定した. NH4[†]-N, NO2⁻-N, NO3⁻-N, TOC, SO4²⁻, S²⁻は サンプル採取後, 直ちに 0.22 μm のメンブレンフィル ターを用いてろ過を行い, 測定まで 4°Cで保存した. NH4[†]-N, NO2⁻-N, NO3⁻-N は, オートアナライザー (QuAAtro39, BLTEC) を用いて測定した. TOC は,全 有機炭素分析装置 (enviro TOC, Elementar) を用いて測 定した. SO4²⁻はキャピラリー電気泳動 (Agilent 7100, Agilent technology) を用いて測定し、S²⁻は HACH 社の Method8131 に基づいて測定した.

3. 実験結果および考察

表 1 に、リアクター運転開始から 26 日目までの各水質の平均値を示す。図 2 に、pH、 NO_2 -N、 NO_3 -N、TOC、 S^2 -の経時変化を示す。pH は、全リアクターで Inf.より低下した.pH の最小値は R1 Eff.の 6.5 であり、R4 Eff.との差は 0.6 であった。pH 低下は、SAD の際に H^+ を生成しアルカリ度を消費したことにより生じるが、C/N 比の増加に伴いその低下は抑制された。

NH4+-N の増加は, リアクターに充填されたグラニュ ールと S⁰ に付着した微生物による NO₃-N から NH₄+-N への異化的環元反応に起因されたことが推察された ²⁾. NO₃-N は,全リアクターで Inf.より低下し,平均除 去率は、R1 Eff., R2 Eff., R3 Eff., R4 Eff., R5 Eff.でそ れぞれ 68.7, 98.0, 97.7, 94.8, 97.0%であった. NO₂-Nは、C/N比の増加に伴い減少傾向を示し、R4 Eff.や R5 Eff.では 1.0 mg-N/L 以下となった. S⁰ を電子供与体 とする SAD は、NO₃-N から NO₂-N への還元と、NO₂--N から N2までの還元の2段階の連続反応とみなすこ とができる 3). 電子供与体に有機物が追加されて MD となると、主として NO₃-N から NO₂-N への還元は SADが、NO₂-NからN₂への還元はHDにより行われ、 両者にはリレー的な反応関係があると報告されている 4). そのため、低 C/N 比の条件下では HD 活性が低下 し、 NO_2 -N から N_2 への還元が進まなかったことで、 NO_2 -N が蓄積したと考えられる.

 SO_4 ²は Inf.と比較して、R1 Eff.,R2 Eff.および R3 Eff. で増加したが、R4 Eff.と R5 Eff.では増加しなかった.R4 Eff.と R5 Eff.における ORP はより負の値を示しており、 S^0 または SO_4 ²が還元されることで、 S^2 が増加したことが示唆された.SAD における S/N 比 (SO_4 ²-Sの生成量/ NO_3 -N の除去量)の理論値は、2.51 g-S/g-N である.S/N 比の平均値は、R1 Eff.,R2 Eff.,R3 Eff.,R4 Eff.,R5 Eff.でそれぞれ 4.2,2.7,1.7,1.2,0.8 であった.R1 Eff.,R2 Eff.では、理論値より高い S/N 比であった.Inf.の有機物不足により、グラニュールの分解が進み、その際に生成した SO_4 ²により,S/N 比が大きくなった可能性が示唆された.R3 Eff.,R4 Eff.,R5 Eff.は TOC 除去率がそれぞれ 51.3,44.3,54.9%であったことから MD が行われていたことが示唆された.

表 1. 各水質の平均値

	Inf.	R1 Eff.	R2 Eff.	R3 Eff.	R4 Eff.	R5 Eff.
рН	$\textbf{7.69} \pm \textbf{0.14}$	$\textbf{6.52} \pm \textbf{0.60}$	$\textbf{6.88} \pm \textbf{0.58}$	$\textbf{7.16} \pm \textbf{0.40}$	$\textbf{7.27} \pm \textbf{0.38}$	$\textbf{7.25} \pm \textbf{0.45}$
ORP (mV)	$\textbf{31} \pm \textbf{21}$	-31 \pm 47	-84 \pm 68	-160 \pm 73	-220 \pm 82	-225 \pm 99
Salinity (‰)	$\textbf{30} \pm \textbf{0.6}$	$\textbf{29} \pm \textbf{0.6}$	$\textbf{30} \pm \textbf{0.6}$	$\textbf{29} \pm \textbf{0.6}$	$\textbf{30} \pm \textbf{0.7}$	$\textbf{30} \pm \textbf{0.7}$
Temp (°C)	$\textbf{25.0} \pm \textbf{1.6}$	$\textbf{25.4} \pm \textbf{1.8}$	$\textbf{25.4} \pm \textbf{1.7}$	$\textbf{25.5} \pm \textbf{1.7}$	$\textbf{25.4} \!\pm\! \textbf{1.6}$	$\textbf{25.4} \pm \textbf{1.7}$
SO ₄ 2- (mg/L)	$\boldsymbol{2255 \pm 389}$	$\textbf{2496} \pm \textbf{321}$	$\textbf{2469} \pm \textbf{597}$	$\textbf{2369} \pm \textbf{448}$	$\textbf{2221} \pm \textbf{556}$	$\textbf{2133} \pm \textbf{359}$
S ²⁻ (mg/L)	$\boldsymbol{0.00\pm0.00}$	$\textbf{0.01} \pm \textbf{0.01}$	$\boldsymbol{0.00\pm0.00}$	$\textbf{1.36} \pm \textbf{1.76}$	$\pmb{6.42 \pm 10.8}$	$\textbf{6.32} \pm \textbf{12.5}$
TOC (mgC/L)	$\textbf{1.5} \pm \textbf{1.9}$	3.0 ± 0.5	$\textbf{12} \!\pm\! \textbf{1.9}$	15 \pm 2.5	$\textbf{33} \!\pm\! \textbf{2.0}$	$\textbf{40.6} \pm \textbf{6.6}$
NH ₄ +-N (mg-N/L)	$\textbf{0.59} \pm \textbf{0.1}$	$\boldsymbol{0.88 \pm 0.3}$	0.74 ± 0.4	$\textbf{0.71} \pm \textbf{0.2}$	1.34 ± 1.1	$\boldsymbol{0.83 \pm 0.4}$
NO ₂ -N (mg-N/L)	$\textbf{0.23} \pm \textbf{0.3}$	$\textbf{11} \pm \textbf{6.3}$	$\textbf{2.2} \pm \textbf{1.9}$	$\textbf{1.1} \pm \textbf{2.0}$	$\textbf{0.77} \pm \textbf{1.5}$	$\textbf{0.91} \pm \textbf{1.8}$
NO₃⁻-N (mg-N/L)	31 ± 1.0	$\textbf{6.3} \pm \textbf{5.6}$	$\textbf{0.52} \pm \textbf{1.4}$	0.74 ± 2.0	1.3 ± 3.6	0.69 ± 1.7

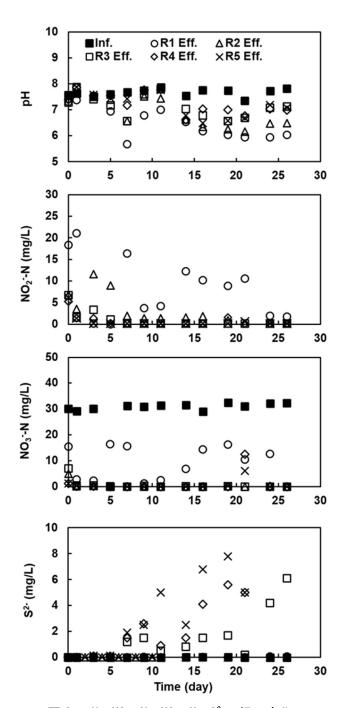


図 2. pH, NO₂-N, NO₃-N, S²-の経日変化

4. おわりに

本研究では、模擬養殖排水を対象に、異なる C/N 比での脱窒性能を評価した. 今後も、引き続き USB リアクターの運転を行う. また、USB リアクター内の微生物群集構造を明らかにする.

参考文献

- 1) Zheng et al., 2024. Sci. Total Environ, 957, 177419.
- 2) Li et al., 2022. Environ. Pollution, 305, 119322.
- 3) Wang et al., 2023. Chemosphere, 337, 139354.
- 4) Zhou et al., 2023. Chem. Eng. J., 463, 142315.