連接軌道路切に敷設されるレールの腐食対策に関する力学的検討

東日本旅客鉄道株式会社 〇 河村 拓弥 同 安達 季並

同 小柳 毅

正会員 富樫 大樹

1. はじめに

踏切内部に敷設されたレールの腐食に起因したレール損傷対策として、一部の踏切ではレールの腹部から底部を覆う形であらかじめ被覆を施している(図1).しかし、列車荷重に加え、自動車の通行が多い場合、繰り返し荷重によって被覆層を損傷するケースが発生しており(図2)、期待される効果を十分に得られないことが懸念される.

図1 腐食対策の例

図2 損傷した被覆層の例

そこで本稿では、連接軌道踏切内のレールに施した被覆層の損傷防止を目的に、複数の被覆材の力学的な性能を検討した結果を報告する.

2. 検討概要

各被覆工法の概要を表 1 に示す. 検討は連接軌道 踏切へ敷設されたレールを模擬するため, 各工法の 被覆を施した 50N レールを 3 試験体ずつ作成し, 連 接軌道ブロックに締結して, 動的二軸載荷試験, ふく 進抵抗試験, 電気絶縁抵抗試験を行った. 1)

表1 各被覆工法の概要

	主材料	防食手法	定着方法		
材料A	ガラス繊維 (樹脂含浸)	電気遮断	プライマー塗布 紫外線硬化		
材料B	アラミド繊維 (FRP材成形)	電気遮断	プライマー塗布		
材料C	金属皮膜	犠牲防食	吹付け (溶射法)		

3. 各試験方法と結果

(1) 動的二軸載荷試験

各工法の各試験体に対し、締結装置間レール中央 部へ 100 万回繰返し二軸載荷を実施した. 試験時の 設置状況及び載荷条件を図3,4に示す.また、被覆

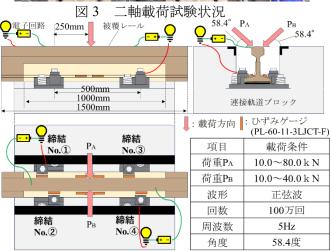


図4 設置模式図と載荷条件

層の損傷タイミングの確認は、豆電球が点灯する電子回路とした. さらに、ひずみゲージを被覆層の締結装置直上とレール中央部に貼付け、繰返し載荷回数によるひずみ変化を確認した. 各試験体の載荷前の平均被覆層膜厚、豆電球の点灯までの載荷回数、各部の最大ひずみ量を表 2 に示す.

表 2 試験前及び試験結果数値等一覧


表2 試験削及び試験結果数値等一覧								
	- 1	試験前		試験結果				
	試験体	平均膜序 (mm)		点灯時の載荷回数 (回)		最大ひずみ (×10 ⁻⁶)		
	144	①側	④側	①側	④側	①②側	中央部	34側
材	A-1	1.66	1.33	未点灯	未点灯	105	169	110
料	A-2	1.39	1.47	33,000	未点灯	120	181	125
A	A-3	1.32	1.58	136,600	未点灯	109	165	130
材	B-1	1.46	2.32	920	未点灯	1,454	334	2,321
料	B-2	1.54	2.05	2,800	2,800	1,683	247	1,566
В	B-3	2.47	2.12	未点灯	32,000	1,139	177	1,505
料 C	C-1	0.05	0.16			66	152	85
	C-2	0.22	0.09	金属被覆のたる 点灯確認不可		62	157	83
	C-3	0.07	0.12	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		94	146	77

点灯に関して、材料 A は点灯までの最高回数が 136,600 回に対し、材料 B が 32,000 回であった. 同 じ材料内での点灯回数の差は、膜厚の差が影響して いることが推察される.

ひずみの最大値は、材料 A, C と比較し、材料 B の 締結装置部で顕著に大きかった. これは, 締結装置上 部の被覆層が剥離したためと推察される.

試験後に各構成部材の外観状態確認を行った. 材 料A、B、Cともに、締結装置クリップ部とレール底 部上面間及び、タイプレートとレール底部側面間の 接触部で、摩擦により接触部位形状に削り取られる 損傷が見られた(図5). また, 材料Bでは, 損傷箇所 の周囲において被覆層の剥離が確認できた. これら

の損傷部を起点と し,被覆層の損傷 が進行していくと 推定された.

被覆層損傷状態の例

(2) ふく進抵抗試験

各工法3番目の試験体に対し、ふく進抵抗試験を 実施した(図 6). 試験は、荷重を変数とした載荷を 各試験体に対し、3回実施した. 載荷荷重の変動方 法と、各試験体の締結装置1組当たりに換算したふ く進抵抗力及び被覆がないレールを想定した際の 理論値を表3に示す.

図 6 設置模式図

載荷荷重の変動方法とふく進抵抗力試験結果

荷重P(kN)						
$0.0 \Rightarrow 1.0 \Rightarrow 0.0 \Rightarrow 2.0 \Rightarrow 0.0 \Rightarrow 3.0 \Rightarrow 0.0 \Rightarrow \text{Pmax} \Rightarrow 0.0$						
(Pmax:レール3mm移動時)						
			Libert Co.			

	材料A	材料B	材料C	被覆なし (理論値)
ふく進抵抗力	7.6kN	7.3kN	5.6kN	9.0kN

材料 A と B では、概ね同等の値であったが、材料 C は比較すると小さい結果であった. レール被覆を しない場合と比較し、被覆をすることで、ふく進抵 抗力が低下した. なお,参考までであるが,直結系 軌道用の締結装置の標準的ふく進抵抗力「5kN/m/レ ール」¹)を上回ることは確認できた.

(3) 電気絶縁抵抗試験

各工法 3 番目の試験 体に対し、レールから 連接軌道ブロック下間 での電気絶縁抵抗値を 周 波 数 0.52kHz, 1.02kHz, 2.02kHz の各 条件下1)での試験によ り確認した(図7).最も

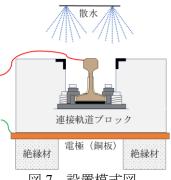


図 7 設置模式図

過酷な周波数 2.02kHz での電気絶縁抵抗値を 1km 当 たりに換算した結果を表4に示す.

表 4 電気絶縁抵抗試験結果

		_				
周波数	試験条件			材料A	材料B	材料C
(kHz)				(Ω/km)	(Ω/km)	(Ω/km)
	乾燥状態			94.2	94.5	42.7
2.02	降雨状態	水道水	飽和状態	86.2	31.6	4.0
			1分経過後	87.9	41.2	5.2
	汚損状態	食塩水	飽和状態	23.5	7.4	1.7
		0.1%	1分経過後	34.8	12.3	2.1
	劣悪状態	食塩水	飽和状態	2.6	1.0	0.6
		为恶状態	1.0%	1分経過後	4.6	1.3

※在来線電気絶縁抵抗値の目標値:2.0Ω/km¹⁾

目標値※と比較し、材料Aは、どの条件においても 上回り, 材料 B は, 劣悪状態で下回った. 汚損状態 においては、絶縁性能が確保できていることが確認 できたが、被覆層の損傷の進行や劣悪環境下では、 絶縁性能がより低下することが推察される.

4. まとめ

本検討により以下の知見を得た.

- (1) 繰返し荷重により、締結装置クリップ部及びタイ プレートとの接触部分が起点となり被覆層が損 傷することが確認された.
- (2) 被覆層の主材料により力学特性が異なる結果で あった、被覆層の膜厚や定着方法も影響因子とし て考えられる.
- (3) レールに被覆を施したとしても、被覆層の状態確 認とレール探傷の定期的な継続が肝要となる.

工法は、現場状況や求める性能及びコスト, 施工性 により選定が必要である. さらに, 締結装置の改良に より、被覆層の延命の余地があると考えている.

最後に、本試験にてご協力いただいた関係者の皆様 に、この場をお借りして厚く御礼を申し上げる.

(参考文献)

1)「レール締結装置の試験の手引きおよび照査例」(公財)鉄 道総合技術研究所, 2022.4