# 日射に関する諸条件と中立温度低下域との関係性について

1 はじめに

ロングレール軌道では、レール温度上昇時の線膨張がま くらぎの抵抗力によって妨げられ温度応力が生じる不動区 間が存在するため、座屈の発生を未然に防止するためには 適切な軸力管理が不可欠である.そこで、レール中立温度 の挙動を把握するため、日陰の移動によってレールの日射 条件が空間的・時間的に変化し、ふく進が生じる場合に着 目した研究を行ってきた<sup>1)</sup>.

本研究では、日陰に起因して座屈リスクが高まる事象に ついて調べるため、中立温度低下域でレール温度が上昇す る(相対温度が増大する)状況について2ケース検討した.

**2** 解析手法<sup>1,2)</sup>

#### 2.1 解析モデルの概要

レール温度解析とふく進解析から成る数値解法<sup>2)</sup>を用いて,中立温度分布の空間・時間変動を求める.

レール温度 T の熱伝導方程式は次式で与えられる.

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} + \frac{1}{C_R \rho A} \{ \gamma Q_S - h S_R (T - T_a) - \epsilon S_R (T^4 - T_a^4) \}$$
(1)

ここで、 $\kappa$ は熱伝導係数、 $C_R$ は比熱、 $\rho$ は質量密度、Aは レール断面積、hは空気の熱伝導率、 $T_a$ は気温、 $S_R$ はレー ル断面の周長、 $\epsilon$ はレールと周辺環境との間での輻射に関 する係数、 $Q_S$ は太陽輻射エネルギーに関する値であり、 $\gamma$ はその吸収率である。式(1)を有限要素で離散化し、時間 積分により逐次解くことで、実際の気温から同時刻のレー ル温度を算出する。

ふく進解析は,前述したレール温度解析によって得られ たレール温度Tと,レール拘束力から得られたひずみに基 づき,温度伸縮と弾性変形を考慮したレールのつり合い式 を離散化して得た軌道長手方向変位から中立温度を得るも のである.レールに作用する軸力Nは次式で与えられる.

 $N = EA(-\varepsilon + \alpha \Delta T) \tag{2}$ 

ここで、 $\varepsilon$ は伸びひずみ、EAはレールの伸び剛性、 $\alpha$ は線 膨張係数である.ふく進解析において  $\Delta T$ は、設定温度を 基準とした相対温度とし、軸力 N は圧縮を正とする.な お、レールは締結部において道床縦抵抗力によって拘束さ れるものとする.道床縦抵抗力は非弾性履歴モデルで与え、 新潟大学大学院自然科学研究科 学生会員 高木 柚子 新潟大学工学部 正会員 阿部 和久

次式で相対変位と拘束力の関係を与える.

$$f_S = f_{S0} \frac{u}{u_a + |u|} \tag{3}$$

ここで、uはレールの軸方向変位、 $f_S$ は道床縦抵抗力、 $f_{S0}$ は最終道床縦抵抗力である.また、 $u_a$ は $f_s$ が $f_{S0}/2$ となるときのレール軸方向変位に相当する値である。本解析においては、まくらぎ 1/2本(レール1本)当り $f_{S0} = 4000$ N、 $u_a = 1$ mmで与え、Newton-Raphson法に基づいた反復計算により解を求めた。

# 2.2 解析条件

レール両端の可動区間の干渉を避け、十分な不動区間長 を確保するため、まくらぎ 4000 区間(2400m)をモデル 化し,これを解析対象とした.なお,レール両端変位は拘 束せずに, 道床縦抵抗力が作用する下での伸縮を許容した. レール敷設箇所は新潟市を想定し、北緯 38°、東経 139°、 標高 25m として日射量を求めた. 直線軌道(レール)に 沿って一次元座標 xを設定し、東西方向とのなす角 $\Theta$ (反 時計回りが正)が0°のときの西端を原点とした.また,ま くらぎ間隔は 0.6m, 50kgN レールを対象に表 2.2 のとお りに各種パラメータを設定した. 日陰区間の設定に際して 解析区間中央,レールからの距離 d = 20m の位置に建物 を設置し、これによってレール上に生じる日陰の幅 B を 30m, 建物の高さは無限とした. 解析においては断りがな い限り、日中は常に快晴とし、日射を遮るものは建物以外 に無いものとする. 2010年8月1日~2011年7月31日の 一年間を解析対象期間とし、気象庁による新潟市の気温の 観測値を用いた. レールの設定温度は解析開始時点の気温 とし,8月1日午前1時の気温である28.4°Cに設定した.

| 表-1 解析パラメータ |                                 |                      |
|-------------|---------------------------------|----------------------|
| $C_R \rho$  | $(J/km^3)$                      | $3.93\times 10^6$    |
| $\kappa$    | $(m^2/h)$                       | 0.0458               |
| A           | $(m^2)$                         | $64.05\times10^{-4}$ |
| $\gamma$    |                                 | 0.8                  |
| h           | $(W/km^2)$                      | 10.0                 |
| $\epsilon$  | $(\mathrm{J}/\mathrm{hm^2K^4})$ | $1 \times 10^{-4}$   |
| E           | (GPa)                           | 206                  |
| α           | $({\rm K}^{-1})$                | $12 \times 10^{-6}$  |

# 3 解析結果

# 3.1 一時的な長時間の曇天が中立温度分布に及ぼす影響

中立温度低下域で相対温度が増大する恐れがある事象と して,一時的に曇天が発生する場合が挙げられる.雲によっ て日射が遮られ,レール全体が一様に直達日射を受けてい ない間,曇天直前の日陰区間に生じていた中立温度低下域 は残留する.曇天が数時間継続している間に太陽が移動す ることに伴って日陰区間も移動するため,曇天終了直後に は中立温度の残留部が日射を受けてレール温度が急上昇し, 局所的に軸力が増加する状況が想定される.

計算開始から8月15日12時までは常に快晴で,その後 15時までの3時間にわたり曇天が続いた場合の中立温度 と軸力の分布を求めた.建物位置付近の結果を図-1およ び図-2に示す.図-2に示した日向区間の軸力は,曇りが 生じた場合と快晴の場合それぞれの15時時点の値である.

中立温度低下域の残留分布の影響によって,日陰区間(15時)左側では日向区間にも関わらず相対温度は約-2.5°Cとなっており,局所的な温度増加が発生したと言える.以上を踏まえ曇りが生じた場合の15時の軸力分布を図-2で確認すると,相対温度増加区間の値は日向区間のそれを約30kN上回っており,日陰が軸力増加を惹き起こすことが示された.ただし,このときの軸力は全不動区間に亘って200~270kN前後の小さな値にとどまっており,危険性が増加するとは考え難い.

# 3.2 軌道の敷設方向が中立温度分布に及ぼす影響

軌道の敷設方向の観点から,中立温度低下域が日射を受けて相対温度が増加する事象について引き続き検討を行う. Θ>0°の場合,太陽がレールを跨いだ時点から日陰区間 がレール上に存在しなくなり,以降はレール全域が直達日 射を受け続ける.建物付近における中立温度の低下域は一 定の残留が予想され,日最高気温に達する頃に相対温度が 局所的に大きくなる可能性がある.

終日快晴の条件下において,相対温度の増加が最も顕著 であった $\Theta = 115^{\circ}$ の場合と,その比較対象として $\Theta = 0^{\circ}$ の場合の8月15日のレール温度と中立温度,軸力の分布 を図-3,図-4にそれぞれ示した.前者は16時,後者は 14時36分の値で,これはそれぞれの条件下で日最大軸力 となる時刻である. $\Theta = 115^{\circ}$ の場合にはレール全域が高 温になったことにより,建物付近の中立温度低下域におい て相対温度が増加し,建物の日陰が軸力増加につながる事 象が確認された.建物の日陰の影響を受けていない箇所と 比べて約30kN大きな圧縮軸力が建物の北側で発生してお り,軌道の敷設方向次第では日陰の存在に起因する局所的 な軸力増加が発生することが分かった.

#### 4 おわりに

中立温度が, 日陰区間において低下し, 日陰の非定常性 によって残留する性質を踏まえ、中立温度低下域において 相対温度が局所的に増大する2つの事象について調べた. 一時的な曇天が一定時間生じる場合には、建物位置付近に おいて日陰起因の軸力増加が認められた.しかし曇天中に レール温度が低下し、蓄積していた圧縮力が解放されるこ とで, 曇天非発生時に比べてレール全域で軸力低下が発生 するため、座屈誘発につながる恐れはないと考えられる. これに対して、軌道の敷設方向による日射条件の変化が惹 き起こした約 30kN(レール温度換算で約 2°C)の局所的 な軸力増加に関しては、全軸力が 400kN 前後の値をとっ ているため, 座屈に対して一定の影響を及ぼす可能性があ る.現行の管理基準下では、敷設方向による影響に対し取 り立てて注意を払う必要は無いと推察されるが、このよう な日射条件が座屈発生リスクに及ぼす影響については、さ らなる検討が必要と考えられる.





日向区間の軸対





ぼす影響



# 参考文献

- 高木柚子,阿部和久,紅露一寛:建物の日陰の移動がレー ル中立温度に及ぼす影響,土木学会論文集,Vol.80,No.15, 23-15007,2024.
- 2) 阿部和久,桑山卓也,元好茂:空間的・時間的な温度変化を 受けるロングレールの軸力分布解析,鉄道力学シンポジウム 論文集, No.16, pp.101-108, 2012.