弦振動型重量式降水量計の出力における高周波成分の除去

長岡技術科学大学 非会員(学生) ○浅野拳 長岡技術科学大学 正会員 熊倉俊郎 防災科学技術研究所雪氷防災研究センター 正会員 山下克也 防災科学技術研究所雪氷防災研究センター 正会員 中井専人

1. はじめに

固体降水比較観測計画 SPICE (Solid Precipitation InterComparison Experiment)は、世界気象機関 WMO

(World Meteorological Organization)の測器観測法委 員会 CIMO (Commission for Instruments and Methods of Observation)によって開始された国際的なプロジェ クトである.降水量累積用の SPICE 基準降水量計に は,弦振動型重量式降水量計(GEONOR T-200B 降水 量計)とOTT Pluvio2降水量計の二種類があり,今回 は弦振動型重量式降水量計を用いた.また SPICE プ ロジェクトでは,図-1のようにWMOはDFIR (Double Fence Intercomparison Reference)と呼ばれるサイズの 異なる2重の八角形の防風柵内に重量式の降水量計 を設置することを推奨している.DFIR を使用するこ とで,真の降水量とみなす値を得ることができる.

弦振動型重量式降水量計の出力には大きなノイズ が多く含まれるため、数秒程度の短時間の正確な降 水量データが得られない.本研究では、ノイズを減衰 させた降水量データを得るために、ノイズの除去を 行った.

図-1 防災科学技術研究所雪氷防災研究センターの DFIR の外観

2. 観測概要

データは防災科学技術研究所雪氷防災研究センタ ーに設置した弦振動型重量式降水量計のデータを使 用している.期間は2018年12月1日から2019年3 月31日までの10秒ごとの降水データを記録してお り、そのうちの一部の期間のデータを使用している. 今回は主に降水時の降水量データとして、2019年1 月17日の14時からの1時間ごとの降水量のデータ を用いる.図-2は長岡市における2019年1月17日 の1時間降水量を、縦軸を1時間降水量(mm)、横軸 を時間(時)で表している.

弦振動型重量式降水量計は、3本のワイヤーで吊っ たバケツ内に降水を貯め、バケツの重量から降水量 を算出している.3本のワイヤーそれぞれに重量計が ついており、3つの積算測定値(s1,s2,s3)がある.図-3 に s1, s2, s3の積算降水量を示す.今回は s1の降水 量データを代表として使用し、その他は今後確認・検 討を行う.

図-2 長岡市の 2019 年 1 月 17 日の降水量

3. 手法

図-4 に降水時のデータとして 2019 年 1 月 17 日の 14 時から 1 時間の積算降水量を示す.縦軸は積算降 水量(mm),横軸は時間(10s)を表している.図-4 を基 に作成したのが図-5 である.図-5 には 2019 年 1 月 17 日の 14 時から 1 時間の降水量の増減を示してい る.縦軸は降水量の増減値(mm),横軸は時間(10s)を 表している.降水量の増減値は求めたい時間の積算 降水量から 10秒前の積算降水量を引いて求めている. 図-5 の降水量の増減値にフーリエ変換を適用し,振幅スペクトルを求めると,図-6 のような降水量データの周波数領域のグラフを得ることができる.縦軸は振幅スペクトル,横軸は周波数(Hz)を表している.

降水量の増減

図-7に降雨時の6時間分の1時間降水量の増減の 周波数領域を平均したグラフを示す.同じく図-7に 無降水時の6時間分の1時間降水量の増減の周波数 領域を平均したグラフを示す.図-7,図-8共に,縦 軸は振幅スペクトル,横軸は周波数(Hz)を表してい る.

図-7,図-8のような降水時と無降水時の周波数領 域のグラフを比較すると、周波数が大きくなるにつ れ振幅スペクトルが大体同じように増加している. しかし、降水時のグラフでは、周波数が 0.005Hz よ りも小さい部分で振幅スペクトルが大きくなってい ることが分かる.6時間分全ての降水時のグラフで周 波数が 0.005Hz よりも小さい部分で振幅スペクトル が大きくなっていたが、無降水時では、6時間分のど のグラフにもそのような挙動は見られなかった.こ のことからその振幅スペクトルは降水時特有の波形 データであり、周波数の大きい振幅スペクトルはノ イズであると考えた. そこでローパスフィルタを設 定し、この降水時特有の波形データを残し、ローパス フィルタよりも大きいノイズを除去することで、ノ イズを減衰させた降水時の振幅スペクトルが求めら れると考えた. 最後に逆フーリエ変換を適用するこ とで、ノイズを減衰させた降水量データが得られる と考えた.

振幅スペクトルの最小値をとるために,図-5 を平 滑化した.図-9 に図-6 を 19 項の移動平均の式を用い て平滑化したグラフを示す.図-9 を見ると周波数が 小さいところでは,波形が U 字型になっている.U 字の左側が降水時特有の波形データの特徴,右側が ノイズの波形データの特徴と考え,降水時特有の波 形データを残すために,図-9 の振幅スペクトルが最 小のときの周波数をローパスフィルタとして設定す る.図-9 の振幅スペクトルが最小のときの周波数は 0.005Hz である.

4. 結果と考察

図-7 にローパスフィルタをかけ, 逆フーリエ変換 を適用した結果を図-10 に示す. 周波数のローパスフ ィルタは 0.005Hz とした. 図-10 の1 時間降水量の増 減値を元データに当てはめて計算すると、ノイズが 減衰された1時間当たりの積算降水量グラフが得ら れる.その結果を図-11に示す.ノイズが減衰される 前の積算降水量グラフである図-2と、ノイズが減衰 された積算降水量グラフである図-11を比較したグ ラフを図-12に示す.図-12を見るとノイズがかなり 減衰されていることが分かる.傾きや形はほとんど 変化がないことから、ノイズだけを除去できている といえる.

図-10 図-7 にローパスフィルタをかけた場合の時 間領域のグラフ

5. まとめ

弦振動型重量式降水量計のノイズを除去するため, 維持間の連続した 10 秒データをフーリエ変換し,ロ ーパスフィルタの設定を検討した結果,0.005Hz を閾 値とすればよいことが分かった.その結果,ノイズを 除去できたようではあるが、今回は3つの積算測定 値のうちslを使用したが、s2、s3も使用して確認・ 検討する必要がある.また、1時間のデータでしか解 析していないが、他の時間スケールで解析しなけれ ばいけないし、他の期間ではまた傾向が違う可能性 も考えられる.

参考文献

山下克也ほか,固体降水国際比較実験プロジェクト のための上越サイトにおける捕捉特性調査 中井専人ほか(2009),降水量系の捕捉損失補正の重要 さ,日本気象学会

平沢尚彦ほか(2015), SPICE サイト・陸別街に基準器 として導入した重量式降雪量計 Geonor の計測特性, 雪氷研究大会

大宮哲ほか(2017), 強風時における雨量計の降雪粒子 捕捉率に関する検討, 寒地土木研究所月報