新潟大学自然科学研究科	学生員	山田高也
新潟大学工学部	正会員	阿部和久
新潟大学工学部	正会員	紅露一寬

1 はじめに

地下鉄軌道の設計に際し,列車走行に伴い発生する振動 が、近接する建物内の振動や騒音などの周辺環境へ及ぼす 影響を事前に評価することは重要である. そのためには、 起振源となる車輪・軌道系の相互作用を始め、トンネルや 地盤, さらには建物内までの一連の振動伝播過程を考慮す る必要がある.また、加振源となる輪重履歴は、列車の走 行速度と車輪・レール間凹凸特性に依存するため、振動・ 騒音の定量的評価にはこれらの設定も不可欠である.これ までに, 文献 1) の解法を用いた軌道の単位定点調和加振応 答解析により軌道・トンネル・地盤連成系のトンネル覆工 における振動加速度と,剛基礎に離散支持され凹凸を設定 したレールと, 走行車輪の時刻歴連成応答解析より求めた 輪重スペクトルの積により, 車輪走行時のトンネル振動応 答を近似評価する手法を構築した. なお、走行車輪の時刻 歴応答は、車輪・レール間凹凸に依存するため、本来トン ネル応答の期待値は、複数の凹凸に対する解より求めるこ ととなる.本研究では、車輪・レール間凹凸が所定の距離 相関を有する場合を対象に、トンネル評価点における加速 度レベルの期待値を直接導出する方法について検討する.

1) 1)

文献 1) に構成した軌道・トンネル・地盤連成解析手法の 概要について述べる.

2.1 軌道のモデル化

解法の構成に当り,軌道系とトンネル・地盤系とを分離 して定式化する.前者は,間隔Lで周期的に配置されたま くらぎで離散支持した無限長レールによりモデル化する. 図-1に防振まくらぎ軌道の例を示す.

円振動数ωの単位定点加振を受ける当該レールの,定常 鉛直たわみ応答に関する運動方程式は次式で与えられる.

$$EIw^{\prime\prime\prime\prime} - \rho A\omega^2 \tilde{w} = \delta(x - x_p) - \sum_{j = -\infty}^{\infty} F_j \delta(x - Lj) \quad (1)$$

ここで、レールは Euler ばりによりモデル化しており、wはレールたわみ、*EI* はレールの曲げ剛性、 ρA は単位長さ 当たりの質量、 x_p は単位調和加振 $e^{i\omega t}$ の作用位置、 F_j は *j* 番まくらぎからレールに作用する反力、 δ はデルタ関数、

図-1 防振まくらぎ軌道のモデル化

 $w'''' = d^4w/dx^4$ である.たわみ応答に対して、まくらぎ 間隔 L に関する次の Floquet 変換¹⁾ を適用する.

$$\tilde{w}(\tilde{x},\kappa) = \sum_{n=-\infty}^{\infty} w(\tilde{x}+nL)e^{in\kappa L}$$
(2)

ここで, \tilde{x} は軌道1ユニット (-L/2, L/2)内の座標, κ は Floquet 波数と呼ばれる波数の次元を持つ変数である.な お,Floquet 変換は \tilde{x} と κ について次の周期性を持つ.

$$\tilde{w}(\tilde{x} + L, \kappa) = e^{-i\kappa L} \tilde{w}(\tilde{x}, \kappa),$$

$$\tilde{w}(\tilde{x}, \kappa + \frac{2\pi}{L}) = \tilde{w}(\tilde{x}, \kappa)$$
(3)

w は,式(3)の周期条件の下,次の方程式をみたす.

$$EI\tilde{w}^{\prime\prime\prime\prime\prime} - \rho A\omega^2 \tilde{w} = \delta(\tilde{x} - x_p) - k_e \tilde{w} \delta(x) \tag{4}$$

ここで、Floquet 変換の下に定義されたまくらぎ・トンネ ル・地盤系の動的等価剛性 k_e を用いて、まくらぎ反力を $k_e \tilde{w}$ と表している.

式 (3) 第 1 式の周期条件をみたす様に, *ŵ* を以下の Fourier 級数展開により表現する.

$$\tilde{w} = \sum_{n} w_n(\kappa) e^{-iz_n x}, \quad z_n = \frac{2\pi n}{L} + \kappa$$
 (5)

式 (4) をみたす様に w_n を決定し,式 (5) より,まくらぎ 直上のレールたわみ $\tilde{w}(0) = \sum \tilde{w}_n$ を求める.

2.2 トンネルのモデル化

図-2に示したトンネル・地盤連成系を,軌道同様にまく らぎ間隔 L に関して x 方向に Floquet 変換する.トンネル 1 ユニットにおける Floquet 変換 ũ の構成に当り,トンネ ル長手方向 x については軌道と同様に Fourier 級数展開す る.これにより,当該問題はトンネル断面に関する準二次 元問題に帰着する.トンネル断面は複雑な形状を有するた

図-2 単線シールドトンネルのモデル化

め,有限要素法により離散近似する.トンネルの応答解 *ũ* は次式によって表される.

$$\tilde{\mathbf{u}} = [\mathbf{N}(y, z)] \sum_{n} \{\mathbf{U}_n\} e^{-iz_n x}$$
(6)

ここで, [N] は断面内の有限要素補間関数から成る行列, $\{\mathbf{U}_n\}$ は Fourier 級数第 n 項における節点変位ベクトルである.

トンネルの有限要素方程式は次式で与えられる.

$$[\mathbf{K}'_{n}]{\{\mathbf{U}_{n}\}} = {\{\mathbf{F}_{n}\}},$$

$$[\mathbf{K}'_{n}] = [\mathbf{K}_{n} - \omega^{2}\mathbf{M}]$$
(7)

ここで, [K_n], [M] は剛性行列と質量行列である.

式(8)の有限要素方程式を、トンネル・地盤境界節点と それ以外とに分けて表すと次式となる.

$$\begin{bmatrix} \mathbf{K}'_{naa} & \mathbf{K}'_{nab} \\ \mathbf{K}'_{nba} & \mathbf{K}'_{nbb} \end{bmatrix} \begin{cases} \mathbf{U}_{na} \\ \mathbf{U}_{nb} \end{cases} = \begin{cases} \mathbf{F}_{na} \\ \mathbf{F}_{nb} \end{cases}$$
(8)

ここで、() $_b$ はトンネル・地盤境界節点に関する成分、() $_a$ はそれ以外の節点成分である. \mathbf{F}_{na} の非ゼロ成分は、まくらぎ・道床間作用力である.

地盤境界における地盤インピーダンス行列を [$\hat{\mathbf{K}}_n$] とおき,次式をみたすものとして定義する.

$$[\hat{\mathbf{K}}_n]\{\mathbf{U}_{Gn}\} = \{\mathbf{F}_{Gn}\}$$
(9)

ここで、 $\{\mathbf{U}_{Gn}\}, \{\mathbf{F}_{Gn}\}$ は、それぞれ地盤側の節点変位と節点力である。

トンネル・地盤境界において,次の変位の適合条件と, 力のつり合い条件を課す.

$$\{\mathbf{U}_{nb}\} = \{\mathbf{G}_{Gn}\}, \quad \{\mathbf{F}_{nb}\} + \{\mathbf{F}_{Gn}\} = 0$$
 (10)

式(9),(10)を(8)に代入すると、次の求解方程式を得る.

$$\begin{bmatrix} \mathbf{K}'_{naa} & \mathbf{K}'_{nab} \\ \mathbf{K}'_{nba} & \mathbf{K}'_{nbb} + \hat{\mathbf{K}}_n \end{bmatrix} \begin{cases} \mathbf{U}_{na} \\ \mathbf{U}_{nb} \end{cases} = \begin{cases} \mathbf{F}_{na} \\ \mathbf{0} \end{cases}$$
(11)

2.3 地盤のモデル化

地表面からトンネル上端までの土被りがトンネル径の2 倍以上ある場合,両者間の連成は無視し得る²⁾.そこで, 地盤に支持されたトンネルの振動応答評価に際し,地盤は 三次元無限一様動弾性場で与える.

地盤変位の Floquet 変換を次式により与える³⁾.

$$\tilde{\mathbf{u}}_G = \nabla \phi + \nabla \times \{ \psi \mathbf{e}_x + \ell \nabla \times (\chi \mathbf{e}_x) \}$$
(12)

ここで、 \mathbf{e}_x はx軸方向の単位ベクトル、 ℓ は長さの次元を 有するパラメータであり、値は任意である.

式 (12) における ϕ , ψ , χ を図の円筒座標系の下, 次式 により解析的に展開する.

$$g = \sum_{n,m} a_{nm}(\kappa) H_m^{(2)}(k_n r) e^{im\theta} e^{iz_n \tilde{x}},$$

$$k_n^2 = \frac{\omega^2}{C^2} - z_n^2$$
(13)

ここで, $g \ t \phi, \psi, \chi$ の何れかであり, $a_{nm} \ t \in \mathbb{R}$ ある. $H_m^{(2)} \ t \ f \ 2 \ e \ Hankel
関数である.$

また, C は地盤の縦波または横波の伝播速度 C_L , C_T の 何れかであり, $g = \phi$ の場合は $C = C_L$, ϕ , χ の場合は $C = C_T$ となる.

トンネル・地盤境界 *S_R*上で,式(6)と(12)との適合条 件,および接触力のつり合い条件を課すことで,最終的に 次の地盤インピーダンス行列を得る.

$$\hat{\mathbf{K}}_{n,jl} = -\frac{L}{2\pi R} [\mathbf{L}_j^T] \sum_m [\mathbf{Q}_{jm}^* \mathbf{S}_{nm} \mathbf{U}_{nm}^{-1} \mathbf{Q}_{lm}] [\mathbf{L}_l],$$

$$[\mathbf{Q}_{jm}] = \int_{S_R} [\mathbf{N}_{sj}] e^{-im\theta} ds$$
(14)

ここで, $\hat{\mathbf{K}}_{n,jl}$ は, インピーダンス行列 [$\hat{\mathbf{K}}_{n}$] の j および l番節点に関する部分行列, R はトンネル外周半径, \mathbf{N}_{sj} は j 番節点の S_R 上における補間関数であるまた, \mathbf{U}_{nm} , \mathbf{S}_{nm} は式 (12) に基づき S_R 上の変位と接触力を導出する 際に与えられる 3×3 の行列であり, $[\mathbf{L}_{j}]$ は j 番節点におけ る極座標値 θ_{j} に関する以下の座標変換行列である.

$$\begin{bmatrix} \mathbf{L}_j \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_j & \sin \theta_j \\ 0 & -\sin \theta_j & \cos \theta_j \end{bmatrix}$$
(15)

3 振動加速度レベルの期待値解析手法

走行速度 V で走行する車輪の時刻 $t_j = j\Delta t$ における位置 x_j を次式で与える.

$$x_j = V t_j = j \Delta t V \tag{16}$$

凹凸の無い軌道上を車輪が走行する場合における,車輪・ レール間作用力を *F*_{0*i*} とする.一方,図-3 に示すように *x_i* にのみ単位凸部を有する場合に得られる車輪・レール間作 用力時刻歴を $F_{mj}(m = 1, \cdots)$ とする.

 $F_{mj} \ge F_{0j} \ge O$ 差は、 x_j の単位凸部によってのみ発生 する接触力 S_{mj} であり、次式で与えられる.

$$S_{mj} = F_{mj} - F_{0m}, \quad S_{mj} = 0 \ (m < j)$$
 (17)

 x_j における車輪・レール間凹凸を r_j で与える.この凹 凸の存在下での車輪・レール間作用力を F_j とすると、こ れは次式により与えられる.

$$F_{j} = \sum_{m=1}^{j} S_{jm} r_{m} + F_{0j}$$
(18)

これを行列で表すと、次式となる.

$$\{\mathbf{F}\} = [\mathbf{S}]\{\mathbf{r}\} + \{\mathbf{F}_0\}$$
(19)

1/3オクターブバンド中心周波数 f_i における加速度レベ ル L_i は次式で与えられる.

$$L_i = 10 \log_{10} \left(\frac{a_{rms,i}}{a_0}\right)^2 \tag{20}$$

ここで、 $a_0 = 1 \times 10^{-5} (\text{m/s}^2)$ であり、加速度実効値 $a_{rms,i}$ は次式で評価される.

$$a_{rms,i}^{2} = \frac{1}{T} \int_{f_{1i}}^{f_{2i}} |\hat{a}|^{2} df$$

$$\simeq \frac{1}{T} |\hat{a}_{i}^{*}|^{2} \int_{f_{1i}}^{f_{2i}} |\hat{F}|^{2} df$$

$$= \frac{\Delta t}{2\pi T} |\hat{a}_{i}^{*}|^{2} (A_{0} \sum_{j}^{n} F_{j}^{2} + 2 \sum_{\ell}^{n-1} A_{\ell} \sum_{j=\ell+1}^{n} F_{j} F_{j-\ell})$$
(21)

ここで, n はステップ数, $T = n\Delta t$, \hat{a}_i^* は軌道・トンネル・ 地盤連成系で, レールを単位調和加振した時の観測点にお ける加速度振幅である.また, $f_{1i} = 2^{-1/6} f_i$, $f_{2i} = 2^{1/6} f_i$ は中心周波数 f_i の 1/3 オクターブバンドの下端・上端周 波数である.さらに A_i は次式で与えられる.

$$A_{j} = \frac{1}{\Delta t j} \{ \sin(\omega_{2i} \Delta t j) - \sin(\omega_{1i} \Delta t j) \} \ (j \neq 0)$$

$$= \omega_{2i} - \omega_{1i} \quad (j = 0)$$
(22)

式 (21) は車輪・レール間接触力の積 $F_j F_m$ より構成されている.式 (20) の加速度レベルの期待値は次式で評価できる.

$$E(L_i) = 10 \{ E(\log_{10} a_{rms,i}^2) - \log_{10} a_0^2 \}$$

$$\leq 10 \{ \log_{10} E(a_{rms,i}^2) - \log_{10} a_0^2 \}$$
(23)

図-3 x_jにおける単位凸部

さらに $E(a_{rms,i}^2)$ は式 (22) より次式で与えられる.

$$E(a_{rms,i}^{2}) = \frac{\Delta t}{2\pi T} |\hat{a}_{i}^{*}|^{2} \{A_{0} \sum_{j}^{n} E(F_{j}^{2}) + 2\sum_{\ell=1}^{n-1} A_{\ell} \sum_{j=\ell+1}^{n} E(F_{j}F_{j-\ell})\}$$

$$(24)$$

式 (24) における $F_j^2, F_j F_{j-\ell}$ の期待値は次式の成分により 与えられる.

$$[\mathbf{H}] = E(\mathbf{F}\mathbf{F}^t) \tag{25}$$

式 (25) に (19) を代入すると次式を得る.

$$[\mathbf{H}] = E(\mathbf{Srr}^T\mathbf{S}^T + \mathbf{SrF}_0^T + \mathbf{F}_0\mathbf{r}^T\mathbf{S}^T + \mathbf{F}_0\mathbf{F}_0^T) \qquad (26)$$

ここで,車輪・レール間凹凸 r の期待値 E(r) = 0,分散・ 共分散行列を [Φ] とする.すると,式 (26)の [**H**] は次式で 与えられる.

$$[\mathbf{H}] = [\mathbf{S} \boldsymbol{\Phi} \mathbf{S}^T + \mathbf{F}_0 \mathbf{F}_0^T]$$
(27)

式 (24) の $\sum E(F_j^2), \sum E(F_jF_{j-\ell})$ は次式により求めることができる.

$$\sum_{j=\ell+1}^{n} E(F_{j}^{2}) = t_{r}(\mathbf{H})$$

$$\sum_{j=\ell+1}^{n} E(F_{j}F_{j-\ell}) = \sum_{j=\ell+1}^{n} H_{j,j-\ell}$$
(28)

ここで, *t_r*(**H**) は行列 [**H**] の対角項成分の和を表している. 凹凸 *r* が次の自己相関関数を持つガウス分布で与えられ ているものとする.

$$R(x) = \sigma^2 e^{-\frac{x}{B}} \tag{29}$$

ここで、 σ^2 は分散、Bは相関長である.すると、rの分散・ 共分散行列 [Φ]の成分は次式で与えられる.

$$\Phi_{ij} = \sigma^2 e^{-\frac{|x_i - x_j|}{B}} \tag{30}$$

4 解析条件

本解析では解析例として,防振まくらぎ軌道,防振マット工法の2種類の構造を対象として,図-4に示すトンネル評価点の期待値を求める.防振まくらぎ軌道は図-5のようにモデル化する.防振マット工法では,まくらぎがコンク

図-4 トンネル断面

図-5 車輪・軌道系のモデル化 (防振まくらぎ軌道)

リート道床に直結した構造とし、レール支持部は軌道パッ ドのみで与える.レールはUIC60とし、EI = 6.3MN·m²、 $\rho A = 60.4$ kg/m と設定した.また、軌道パッドの動的剛 性は $k_r = 83$ MN/m(防振マット軌道は 30MN/m)とした. その他、まくらぎ質量 (レール1本分) は $m_s = 100$ kg ま くらぎ間隔はL = 0.6m とした.

車輪は質点で与え,車軸も含めレール1本あたりの質量 を $m_w = 500$ kg とした.また,走行速度 V および車輪・ レール間接触バネ係数 k_w をそれぞれ,20m/s,2GN/m と 設定した.車輪・レール間の凹凸は式(15)の自己相関関数 に基づいて, $\sigma = 1.2 \times 10^{-5}$ m,B = 0.15m と設定した.

防振マット工法は,RC 道床を防振マットが連続支持する 構造とし,図-4の防振マット部分にバネ定数が10MN/m³ となるようにヤング率を設定する.

防振まくらぎ軌道では、図-4の防振マット部分をコンク リートとして設定する.防振パッドは動的剛性を10MN/m に設定した.

5 解析結果

軌道・トンネル・地盤連成系の加振応答解析より求めた 図-4の加速度評価点における加速度振幅と、図-5に示し た車輪・軌道連成系の時刻歴応答とから、トンネル振動加 速度の期待値を求めた.また、振動加速度レベルの期待値 の妥当性を検証するために、10通りの車輪・レール間凹凸 による振動加速度レベルを求めた.防振まくらぎ軌道の結 果を図-6に、防振マット軌道の結果をを図-7に示す.ま た、図における黒色の実線は、上述した解析手法により求 めた振動加速度レベルの期待値、灰色の点線は、10通り

図-6 トンネル振動加速度レベル (防振まくらぎ軌道)

図-7 トンネル振動加速度レベル(防振マット軌道)

の凹凸より求めた振動加速度レベル,鎖線は10通りの応 答の平均を示している.図-6,図-7より,防振まくらぎ軌 道,防振マット軌道のいずれの軌道条件でも振動加速度レ ベルの期待値は10通りの凹凸の解の平均とほぼ一致する 結果となり,本手法の妥当性を確認できた.

6 おわりに

車輪・レール間凹凸が所定の距離相関を有する場合を対象 に、トンネル評価点における振動加速度レベルの期待値を 直接求める手法を構築した.解析例として、防振まくらぎ 軌道と防振マット軌道を対象に、本手法を適用したところ、 いずれの軌道条件でも、トンネル振動加速度レベルの期待 値は複数の凹凸に対する解の平均と一致する結果となった.

参考文献

- 1) 阿部和久,山田高也,古田 勝,末原美智子,紅露一寛:地 下鉄トンネル・地盤連成系の三次元加振応答解析,土木学会 論文集 A2, 74(2), L-523-L-534, 2018.
- 2) 阿部和久,加藤広輝,古田 勝:列車走行荷重を受けるトン ネル・地盤系の動的応答解析,鉄道力学論文集,第8号,47-52,2004.
- Eringen, A.C. and Şuhubi, E. : Elatodynamics, Vol.⊠, Academic Press,Inc.,1975.