1. はじめに

リモートセンシング技術により取得可能になったデー タは、災害や土地利用の変化等、様々な事象が原因で発 生した土地被覆の変化を抽出するための重要な情報源と して扱われている.

現在, European Space Agency(ESA)により開発・運用さ れ観測データが無償提供されている Sentinel-2 衛星シリ ーズは衛星コンステレーションにより 5 日に一度の高い 観測頻度の光学式の地球観測衛星である.また,観測範 囲が全球であることから,地球全体を対象とした自動更 新されていく時系列観測データアーカイブを利用するこ とができる.この衛星から取得した時系列データアーカ イブを深層学習ネットワークに継続的に入力することで 土地被覆の変化が発生した際に,自動的に変化箇所を抽 出することができる.

そこで本研究では、特定の地域以外にネットワークを 転用する事を目的として、土地被覆毎の特徴を学習した ネットワークに観測頻度の高い衛星から提供される時系 列観測データアーカイブを入力することで土地被覆の変 化の自動抽出がどの程度可能か検討する.

2. 方法

Sentinel-2 衛星の時系列観測データアーカイブから新 潟県新潟市,長岡市および新潟県村上市の時系列画像デ ータをネットワークに利用し,2022年8月3日から発生 した豪雨により新潟県村上市で発生した土砂災害を対象 とする.また,異常検知で利用されている畳み込みオー トエンコーダを用いて土地被覆毎の特徴を学習したネッ トワークを作成する.

2-1. 画像データセットの作成

新潟県新潟市,長岡市,村上市の周辺地域の Sentinel-2 衛星画像(期間:2018年~2021年の6月~8月)を使用 する.画像は GEE (Google Earth Engine)を利用して取得 する. Sentinel-2 衛星画像は,空間分解能 10~60m で TOA 反射率を表す13 の 16bit スペクトルバンドを含んでいる. そのため,前処理として 16bit データから 8bit データへの 形式変換を行う.その後,学習用の画像として短波長赤 外域のバンド 11,近赤外域のバンド 8,緑のバンド 3 の 3 つを組み合わせた合成画像を作成し 50×50 画素で分割 することで合計 100 枚のパッチを得る.

土地被覆毎のネットワークを作成にあたり,12の土地 被覆カテゴリーが存在する,JAXA 提供の高解像度土地 利用土地被覆図¹⁾を活用する.そして,パッチ毎におけ る土地被覆の画像占有率を算出,画像占有率が40%を超 長岡技術科学大学大学院 ○市原 直人 長岡技術科学大学 高橋 一義

える土地被覆を優勢な土地被覆とみなし対応する土地被 覆の学習データとする.

2-2. 優勢土地被覆の特徴を学習したネットワークの作成

MathWorks 社の提供するアプリケーション MATLAB を利用して畳み込みオートエンコーダを作成する.ネッ トワークは、今回対象とする 2022 年 8 月 3 日豪雨による 土砂災害から、落葉樹の特徴を学習したネットワークと した. 既往研究²⁾で記載されている構造を参考に入力画 像サイズを 50×50×3 のサイズに変更する.作成した畳み 込みオートエンコーダネットワークの学習率は 0.01、ミ ニバッチサイズは 128、エポック数は 30 とする.

2-3. 再現画像の評価と土地被覆変化抽出方法

再現画像の評価手段として構造的類似性指数(SSIM) を使用した. SSIM は値が1に近い程,構造的類似性が高いことを示しており,式(1)により計算される³⁾.

災害発生前後の2時期で,土地被覆変化が生じた地域 では,そうでない地域にくらべ SSIM 値が低下すると考 えられる.そこで,解析領域を50×50 画素の小領域に分 割し SSIM 画像を作成する.その後,小領域の SSIM の 平均値とその2時期の差分(A)を算出する.そして,A を閾値とし,小領域毎に2時期の差分がAより大きい場 合,その小領域で土地被覆変化が生じたとする.

$$SSIM(x,y) = \frac{\left(2\mu_x\mu_y\right)\left(2\sigma_{xy}\right)}{\left(\mu_x^2 + \mu_y^2\right)\left(\sigma_x^2 + \sigma_y^2\right)} \tag{1}$$

x:画像 y:再現画像 μ_x, μ_y :局所平均 σ_x, σ_y :標準偏差 σ_{xy} :相互共分散

2-4. 土地被覆変化抽出結果の評価

2022年8月に発生した村上市周辺の豪雨災害を対象に 災害発生前後(発災前:2022年7月31日,発災後:2022 年9月4日)の画像を用いて,土地被覆変化抽出結果を 評価する.土地被覆変化領域の正解データは,発災後画 像の目視判読により作成する.

土地被覆変化抽出結果と正解データから作成される混 同行列(表-1)とそこから計算される精度,適合率,再現 率(式-2~4)の3つの指標を用いて土地被覆抽出結果を 評価する.

表-1 混同行列

判別結果		変化なし	変化あり
正解一	変化なし	TN	FP
	変化あり	FN	TP

$$\hbar g = \frac{TP + TN}{TP + TN + FP + FN}$$
(2)

適合率(土地被覆変化) =
$$\frac{TP}{TP + FP}$$
 (3)

$$再現率(土地被覆変化) = \frac{TP}{TP + FN} \tag{4}$$

3. 結果と考察

3.1. 土地被覆変化箇所の抽出

50×50 画素のパッチと,ネットワークから得られた再 現画像を用いて災害発生前後での SSIM マップをそれぞ れ作成し,バンド毎に発災前後の SSIM 平均値を算出し た (表-2). 表からバンド 3 の SSIM の値が最も発災前後 で差があることが分かった.バンド 3 の SSIM マップの 平均値の差分は 0.043 となったため, 閾値を 0.043 と設定 した.

設定した閾値から, バンド3の土地被覆変化判読マッ プは図-1のようになった.その際,図-1と表-1を対応さ せ,(a)をTN,(b)をFN,(c)をFP,(d)をTPとした.ま た,図-1の結果から目視抽出による正解データと閾値に よる抽出結果を比較し,評価指標を算出した(表-3).表 から,評価指標では,精度約46%,適合率約45%,再現 率約45%と,目視判読結果の示す土地被覆変化領域を半 分程度しか抽出することができていない.

3.2. 土地被覆変化が無いと誤抽出した領域

発災前後でバンド3の SSIM にのみ大きな変化があっ た原因について今回使用した各バンドの特徴から考える と,バンド11,バンド8の二バンドについては植物と裸 地の両方に対して大きい反射率を持つ.対してバンド3 は、植生に関しては小さい反射率であるが、裸地に対し て大きい反射率を持っている. これらのバンド毎の特徴 から、今回対象とした土地被覆の変化でバンド3が最も 変化が大きくなり、これが SSIM の値の変化に影響を与 えたと考える. 目視による判読と異なった抽出結果とな った領域について調べると、発災前後で雲や雲による影 が存在する領域や、領域の半分程度を落葉樹以外の土地 被覆が占めている場合がある. この場合, 今回使用した 落葉樹の特徴を学んでいるネットワークの特性上、落葉 樹の以外の土地被覆の領域を上手く再現することはでき ない. また, 地すべりは凹凸の大きい地形で発生するこ とが多く、影の影響で地すべりによって裸地となった箇 所が確認しづらい領域が存在した. これらが目視判定と 異なった結果となった原因の一因だと考えられる.

4. まとめ

本研究では、高頻度観測衛星の時系列観測データアー カイブを利用し、土地被覆毎の特徴を学習したネットワ ークを用いた土地被覆変化の自動抽出がどれだけ可能か について検討を行った.作成したネットワークはある程 度規模の大きい特徴的な変化をとらえることは可能であ るという結果となった.今回,優勢な土地被覆を学習さ せた畳み込みオートエンコーダネットワークを別地域の 土地被覆変化の判定に利用できると示す結果とはならな かった.使用する学習用画像の精査や,畳み込みオート エンコーダの構造の改善による判定精度の改善が期待で きる.

参考文献

- 宇宙航空研究開発機構 (JAXA) 地球観測研究センター (EORC):高解像度土地利用土地被覆図 ver.21.11, 2020
- Hejar Shahabi S: Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery, MDPI Remote Sens, 13(22), 4698, 2021
- 3) MathWorks : ヘルプセンター, ssim,

https://jp.mathworks.com/help/images/ref/ssim.html

表-2 バンド毎の SSIM マップの平均値

	発災前	発災後
B11	0.819	0.800
B8	0.802	0.799
B3	0.723	0.680

表-3 抽出精度の評価結果

精度(%)	適合率(%)	再現率(%)
46.0	44.9	44.9

図-1 2022年9月4日バンド3の判読結果マップ