光学式反射を用いた固体降水測定機器を用いた風速の推定

長岡技術科学大学	環境社会基盤工学専攻	非会員		\langle	〕小柳颯輝	守田佳宏
長岡技術科学大学	環境社会基盤工学専攻	正会員				熊倉俊郎
	工房雪測	非会員				山崎正喜
防災科学技術研究所	雪氷防災研究センター	非会員	中井専人,	富樫数馬,	鈴木紘一,	大川元造
	スノーテック新潟	非会員			斎藤隆幸,	山倉祐也

1. 背景と目的

我が国では、冬季間に国土の広い範囲で降雪が起 こり、研究や防災のために、降水量や降雪粒子の観 測が行われている.現在、主流となっている降雪観 測機器は高価であるため、多観測地点を実現するこ とは難しい現状にある.そこで、多観測地点を実現 するための降水種別・降水量観測機器として、熊倉 ら(2018)が光学式反射型固体降水種別判別・降水 強度計(以下 PDS とする)を提案した¹⁾.また、遠 藤ら²⁾によって、推定される降水量の補正に、PDS に向かうもしくは離れる方向の風速ベクトルの影 響を考慮する必要があることが示された.本研究で は、PDS 単体での風速ベクトルの推定を目指し、最 終的に降水量を含めた各パラメータの補正を目指 す.今回は今夏に実施した室内実験の結果から、PDS 単体での風速推定の手法について検討した.

2. PDS¹⁾

PDS (図-1) は水平に並ん だ近赤外線発光素子と受光 素子を備え,検知領域を通過 する降水粒子の反射光強度 を5kHzでサンプリングし、 そこから,降水粒子の反射強 度継続時間t_aと,近赤外線照 射域における最大電圧V_{max}

🗷-1 PDS

を求める. ここから**図-2** のような波形が描かれる. このとき,風速が速いほど,降雪粒子の観測領域へ の入射角は鉛直から水平方向に近づくため,入射角 によって V_{max} をとる t は変化する. ここで $t_d = 1$ としたとき, V_{max} をとる位置を Peakshift 量 P_s とし, 中心 ($P_s = 0.5$)からの偏りを表現した. 観測値と, 常に保持している平均値との差を変化率として,平

図−2 波形の概略図

均値を修正し,降水粒子の実際の直径、落下速度と 比例すると考えられる疑似直径 \hat{D} [A.U.] や疑似落 下測度 \hat{W} [A.U.],粒子の個数 \hat{N} (任意時間)等の パラメータが推定される.また,同パラメータから 降水量 \hat{r} [mm/h]も推定される.

3. 風速ベクトル推定の手法

風速ベクトルの推定をするにあたり,前述したように風速の関数である入射角をまず推定する.以下のような手順で,風速推定を試みる.まずPDSの観測領域を降雪粒子が通過する経路をモデルから推定する.この時,PDSの発光パターンを角度に対するガウス分布とし,粒子は検知領域のx方向の中心を通ると考えた(図-3).この経路モデルから,入射角のに対する Peakshift 量Psと入射角のモデル関数を推定する.次に,室内実験から得られる任意の風向風速下での測定データを用い,モデル関数のフィッティングを行い,測定されたPsからの推定を試みることでモデル関数の精度評価ができる.

4. 室内実験

雪氷防災研究センター新庄支所の人工降雪実験 装置施設において,PDS を回転台に載せ,その他の 測器と横風発生装置を,人口降雪実験装置下部に設 置し,任意の風向風速下における室内実験を行った. 計測パターンとして,照射領域を代表する風速(m/s) パターンには[0.5,1.0,2.0,6.0]を,PDSの角度パタ ーンには 0~180度(30度刻み)を設定し,各パタ ーンにおいて 15 分の計測を行った.降雪パターン には,一般的な降雪に近い結晶形の降雪を用いた.

5. 結果と考察

1) モデル関数の決定

モデル経路の計算に用いた式からモデル関数を 決定した場合,非常に複雑な式になってしまい,計 算速度の低下が起こることが考えられる.そこで, モデル経路における入射角 θ に対する P_s をプロット したグラフ(図-4)から, $\theta - P_s$ 関係の特性を視覚的 に確認し,その特性を再現できるようなモデル関数 を考える. [$P_s = 0.5, \theta = 90$]を境に点対称のように ふるまっており, θ が極値に近づくほど増加率また は減衰率は上昇している.このような特性をもとに, 次の式(1)をモデル式として考えた.

 $P_{\rm s} = a \cdot e^{(b(\theta - 90))} + 0.5 \tag{1}$

2) 実験データ

各計測パターンにおける計測データから、 P_s の平 均値と標準偏差を図-5 に示した. [$P_s = 0.5, \theta = 90$] を中心に点対称をとるようにふるまうと考えられ ていたが、1m/s と 2m/s では、 $\theta = 45$ または $\theta = 60$ で $P_s = 0.5$ をとるような波形として確認できたもの、 0.5m/s と 6m/s では、モデル関数に似た特性をもつ 波形は確認できなかった. $P_s = 0.5$ をとる θ がずれた 要因として、横風発生装置から出る風ベクトルが中 心から外側に広がるような形で分布した場合、横風 発生装置に対して右側に設置した PDS の照射領域 では、 $\theta = 90$ 未満で風ベクトルと直行してしまった ことが考えられる.また、 $\theta = 150$ 以上においては、 PDS の筐体が風上側に位置することから、筐体風下 側で乱流が発生し、降水粒子の入射パターンが乱れ てしまった可能性等が考えられる.

図-5 計測データのP。の平均値と標準偏差

6. まとめ

PDS 単体で風速ベクトルを推定する手法とし て,Peakshift 量から降雪粒子の入射角を推定した のち,入射角と粒子の落下速度から風速ベクトル を推定する手法を提案した.モデル関数のフィッ ティングを行った後,モデル関数の評価を行い, よりフィットするモデル関数を模索する必要があ る.また風ベクトルの拡散による影響も考察する 必要がある.

参考文献等

- 1) 熊倉,他:光学反射を利用した個体降水測定機器の開 発と出力の物理量化について、雪氷研究大会、2018
- 遠藤,他:光学反射型個体降水観測機器の降水量に対 する風向風速依存性に関する研究,長岡技術科学大学 修士論文,2020