1. はじめに

高層建物の近接施工や重要構造物の建設に伴い,地 盤の地震応答解析や振動解析を実施する必要がある. 詳細な解析には,微小ひずみレベル(10⁶~10³)における 各種変形係数を精度よく求める必要がある.自然地盤 は,多様な形状の土粒子と複雑な粒子骨格構造で構成 される.さらに,地盤の開削や構造物の建設過程にお ける応力履歴に起因して異方的になることがほとんど である¹⁾.地盤の異方性は,堆積時の粒子配向性や粒 子形状による固有異方性と異方応力状態によって形成 される誘導異方性の2種類がある.

飽和土を対象とした強度に関する異方性の研究に比 べて、微小ひずみ領域での変形特性に関する研究は少 ない.また、不飽和土は、飽和土に比べて考慮する要 因が多く、それによって実験や理論が複雑になるため 研究例が少ない.

そこで本研究では、誘導異方性と固有異方性が飽和 及び不飽和土の小ひずみ領域における異方性と異方圧 密履歴の関係を明らかにすることを目的とする.

2. 試料及び供試体作製方法

2.1 使用試料

本研究では、誘導異方性を調べるため、豊浦砂を使 用する. Fig.1 に豊浦砂の物理特性と粒径加積曲線を 示す.豊浦砂は、日本の土質試験において広く用いら れている、粒径のそろった砂である.

長岡技術科学大学 学生会員 〇西村哲也 長岡技術科学大学 豊田浩史 高田晋

本研究では、堆積角度 0°,45°,90°の3種類の 供試体を空中落下法により作製する.空中落下法は、 試料をふるいから自然落下させて供試体を作製する方 法である.本研究では、落下高さを常に一定となるよ うに調整し、相対密度 Dr が均一な供試体を作製する. モールド内に一定量の試料を入れた後、水槽内で供試 体を乱さない流速で通水する.水はモールド上面まで 満たす.水槽内の水を取り除いた後、水槽内からモー ルドを取り出し、負圧により脱水する.モールドを解 体し、直ナイフとトリマーにより直径 50mm、高さ 12.5mmの円柱供試体に成形する.

3. 試験方法

3.1 **飽和試験の**手順

飽和誘導異方性試験は、供試体に二重負圧をかけて 飽和させた後、p'=50kPa で等方圧密を行い、背圧 200kPaをかけて飽和度を高める.p'=50kPa を一定に保 った状態で軸差応力 $q = \sigma'_a - \sigma'_r$ を調整することで、 異方圧密応力比 $K = \sigma'_r/\sigma'_a$ が 0.25, 0.4, 0.6, 1.0, 2.0, 3.0 となる q 載荷ステップを行う.また、異方圧密応力 比 K は、K=1 で等方応力の圧密、K<1 で圧縮状態の異 方性圧密、K>1 で伸張状態の異方性圧密となる.その 後、異方圧密応力比 K を一定に保ちながら p'=150kPa とし、圧密を行った.その後、せん断剛性率を求める ために、ベンダーエレメント試験(BE 試験)及び局所 微小ひずみ測定試験(LSS 試験)を行った.ここで、 σ'_r は側方有効応力、 σ'_a は鉛直有効応力である.

3.2 不飽和試験の手順

不飽和誘導異方性試験は、大半が飽和試験手順と同様であるが、飽和試験と異なる点は、飽和度を高める背圧 200kPa をかけないことである.その代わりに、異方圧密応力比 K に達した後に、供試体上部から空気圧 50kPa をかけて供試体の水を抜き、飽和度を下げる脱水ステップがある.この後は飽和試験と同様に平均基底応力 pnet=150kPa まで圧密を行い、その後 BE 試験とLSS 試験を行う.

4. BE 試験

三軸試験機のキャップおよびペデスタルにベンダー エレメントを装着する.異方圧密終了後にキャップ側 から供試体の軸方向にせん断波を送信し,ペデスタル 側で受信する.本研究では,送信波条件を波形:sin 波, 電圧:±10V,周波数:15kHz,20kHz,30kHzとして 行う.また,伝播時間の同定法はT.D.法の start-to-start を適用する.

Eq. (1) にせん断波速度 $V_s(m/s)$ およびせん断剛性率 G(MPa)の算出式を示す.ここで、せん断波の伝播距離 L(m)、せん断波の伝播時間 $\Delta t(s)$ 、湿潤密度 $\rho_t(kg/m^3)$ と する.

$$V_s = \frac{L}{\Lambda t} \quad G = \rho_t V_s^2 \times 10^{-6} \tag{1}$$

5. LSS 試験

排水条件では、局所軸ひずみ ε_a (%)および局所せん断 ひずみ ε_s (%)が 0.1%に達するまで, せん断速度 0.0025mm/min でせん断を行う.軸変位および側方変位 の測定には、非接触型変位計を使用する. 局所軸変位 測定を2箇所、局所側方変位測定を1箇所設置する. これらの変位計により、局所軸ひずみ ε_a (%)および局所 せん断ひずみ ε_s (%)を測定し、各種変形係数を Eq. (2) にて算出する. ここで、軸差応力q(kPa)、鉛直有効応力 σ'_a (kPa), 側方有効応力 σ'_r (kPa)、割線ヤング率 E(MPa)とする.

$$q = \sigma'_a - \sigma'_r \quad E = \frac{q}{\varepsilon_a} \times 10^{-1} \quad G = \frac{q}{3\varepsilon_s} \times 10^{-1} \quad (2)$$

6. 試験結果(誘導異方性)

6.1 BE 試験結果

供試体堆積角度 0°の飽和・不飽和試験における BE 試験結果を Fig. 2 に,各堆積角度の飽和試験における BE 試験結果を Fig. 3 に,各堆積角度の不飽和試験に おける BE 試験結果を Fig. 4 にそれぞれ示す.供試体 の密度差による初期せん断剛性率の差をなくすために Eq. (3) に示す間隙比関数 F(e)で初期せん断剛性率 G(MPa)を除して正規化する.

$$F(e) = \frac{(2.\ 17-e)^2}{(1+e)} \tag{3}$$

Fig.2より, 飽和・不飽和共に異方応力状態によって せん断剛性率に差が生じており, 誘導異方性が発現し ていることが確認できる. また, 飽和・不飽和共に K=0.4 でせん断剛性率が最大となり, K=1.0 に近づく につれて小さく, K=2.0 で一度大きくなってから K=3.0 で再び小さくなる傾向を示す.

Fig.3 と Fig.4 より, 飽和・不飽和共に堆積角度が 大きいほどせん断剛性率も大きくなっている. 特に, K>1の伸張応力状態では堆積角度によるせん断剛性率 の差が大きい. これらのことから, 堆積角度による固 有異方性が存在する場合でも誘導異方性が発現し, 伸 張応力状態で固有異方性によるせん断剛性率への影響 が大きいことが分かる.

Fig.3 各堆積角度の飽和試験における BE 試験結果

Fig.4 各堆積角度の不飽和試験における BE 試験結果

6.2 LSS 試験結果

供試体堆積角度 0°の飽和・不飽和試験の LSS 試験 結果を Fig. 5, Fig. 6 にそれぞれ示す.これらの結果か ら飽和・不飽和問わず,割線せん断剛性率は,圧縮応 力状態でひずみが進むごとに大きく減少することが分 かる.一方の伸張応力状態は,初期せん断剛性率が圧 縮応力状態より小さい.また,ひずみの進展による割 線せん断剛性率の変化は小さく,緩やかに減少する. 最終的な割線せん断剛性率は,圧縮応力状態より大き な値となる.異方応力状態によって局所せん断ひずみ 0.01%の割線せん断剛性率と初期せん断剛性率に 5 倍 以上の差が生じている.

7. 既往の研究²⁾との比較

既往の研究²⁾である米山粘性土における誘導異方性 の BE・LSS 試験結果と本研究の豊浦砂における誘導 異方性の BE・LSS 試験結果を比較する.誘導異方性の 比較をするため,既往の研究と本研究ともに堆積角度 0°の試験結果を使用する.

7.1 BE 試験結果の比較

豊浦砂と米山粘性土の飽和・不飽和 BE 試験結果を それぞれ Fig.7 と Fig.8 に示す. Fig.7 より飽和状態 の豊浦砂と米山粘性土は、誘導異方性によるせん断剛 性率の変化は、K=0.4 付近で最大となり K=1.0 に近づ くにつれて小さくなり、K=2.0 で再び大きくなりそれ 以降は小さくなるといった, 似た傾向を示している. 異なる点は、各異方圧密応力比において米山粘性土よ り豊浦砂のせん断剛性率方が大きいことである.一方 の不飽和状態の豊浦砂は、Fig.8 より飽和・不飽和状 態でせん断剛性率の大きさは異なるが、似た傾向を示 している.しかし、不飽和状態の米山粘性土は、飽和 状態の傾向とは異なり、各異方圧密応力比でせん断剛 性率がほぼ一定である.これは、サクションが粘性土 に作用した場合,力学特性に与えるサクションの効果 が大きく,異方性の影響が消失してしまっていると考 えられる.

Fig.7 豊浦砂と米山粘性土の飽和 BE 試験結果

Fig.8 豊浦砂と米山粘性土の不飽和 BE 試験結果

7.2 LSS 試験結果の比較

米山粘性土の飽和・不飽和 LSS 試験結果を Fig. 9, Fig. 10 にそれぞれ示す. これらの結果と豊浦砂の LSS 試験結果の Fig. 5 と Fig. 6 を比較する. 米山粘性土は, 飽和不飽和共に各異方圧密応力比でひずみの増大に伴 う割線せん断剛性率の減少の傾向がほとんど同じであ る. 一方の豊浦砂は, 異方圧密応力比によってひずみ の増大に伴う割線せん断剛性率の減少の傾向が異なる. このことから, 異方圧密応力比によるせん断剛性率へ の影響は, 米山粘性土より豊浦砂の方が大きいといえ る. また, 米山粘性土は豊浦砂より, K>1 において, 割線せん断剛性率のひずみによる低下が大きい. その ため, 異方圧密応力比に関係なく局所せん断ひずみ 0.1%付近の割線せん断剛性率は小さくなることが分 かる.

Fig. 10 米山粘性土の不飽和 LSS 試験結果²⁾

8. まとめ

固有異方性と誘導異方性を考慮したせん断剛性率の 試験より,以下のことが明らかになった.

1. 豊浦砂の初期せん断剛性率においては、飽和・不飽 和状態と固有異方性の有無に関わらず誘導異方性が確 認された.また、固有異方性である堆積角度が大きく なるほど初期せん断剛性率も大きくなることが分かっ た.

2. 豊浦砂の割線せん断剛性率は, K<1 でひずみによる 低下が大きく, K>1 においては, ひずみによる低下が 小さいことが分かった.

3. 既往研究の飽和米山粘性土の初期せん断剛性率は 豊浦砂と同様の誘導異方性を示した.一方,不飽和米 山粘性土は,誘導異方性をほとんど示さなかった.

4. 米山粘性土の割線せん断剛性率のひずみによる低下は,豊浦砂のような異方圧密応力比Kによる低下の傾向に差異は見られなかった.

以上のことから、応力状態や堆積角度を考慮した地 盤の変形解析を実施することが重要であると考えられ る.

【参考文献】

- 1) 吉田望:地盤の地震応答解析, 鹿島出版会, 2010.
- Le Ngoc Bao: Evaluation of mechanical anisotropy of soils considering particle orientation and principal stress ration, 長岡技術科学大学博士論文, 2020.