新潟海岸で観測された飛砂に関する数値解析

 福島工業高等専門学校 産業技術システム工学専攻 社会環境システム工学コース 学生会員 〇山岸 航平 福島工業高等専門学校 都市システム工学科 正会員 菊地 卓郎 長岡工業高等専門学校 環境都市工学科 正会員 衛藤 俊彦
東京建設コンサルタント 東京本社 河川本部 河川計画部 正会員 大澤 範一

1. はじめに

日本は海に囲まれた島国のため,適切な海岸管理は 必要不可欠であり,重要な問題である.海岸の構成要 素は高潮,波浪,津波から人命,資産を守るための堤 防,護岸といった海岸構造物と防風,塩害から生活, 経済環境を守るための海岸保安林,堆砂垣,フェンス といった海岸砂防構造物の2つに大別される.

本研究では沿岸道路への侵入や港湾の埋没, 農地の 塩害等の原因となっており, 人々に多大な影響を及ぼ している飛砂に着目し, 飛砂を固気二相流として, 流 体力学的に捉えて, 解析的にアプローチすることによ って, 現地スケールの飛砂の流動特性を把握し, 効率 良く飛砂制御するための一助となることを目的とする.

2. 数値解析モデル

飛砂のような固気二相流の数値解析には様々なモデ ルが存在する.本研究では計算負荷が大きくなく,従 来から多く用いられているオイラー・オイラー法を採 用することとした.また,解析ツールには固気二相流 を含む様々な流動現象に対応したソルバを有する OpenFOAMを採用し,気相では標準k-ε乱流モデル, 粒子相では B.G.M.VanWachem¹⁾による動力学モデルを 取り入れた.固気二相流の支配方程式である連続の式 と運動方程式は有限体積法に基づき離散化し,圧力-速度連成手法には PISO 法と SIMPLE 法を組み合わせ た PIMPLE 法を用いた.

3. 現地観測概要

本研究における解析対象は国内において飛砂の影響 が特に大きいとされる新潟海岸に注目し,飛砂の現地 観測データが揃っている佐藤ら²⁾のデータを用いるこ ととした.具体的には以下のようである.1998年12 月から 1999 年 3 月の約 3 ヶ月間に計 3 回,砂浜平坦 地の自然の状態において補砂器によって観測された飛 砂量データ,同期間に高さ 3.5m 地点での風向・風速計 によって毎時 10 分間の頻度で観測された風速データ であり,飛砂の流動特性を把握する上で重要な計測量 である飛砂量と風速が得られている.

4. 数值解析概要

数値解析は鉛直2次元で行い,現地観測データを基 に解析領域を決定し、モデルを作成した. 解析領域は 流下方向 x=50m, 高さ y 方向=3.55m とし, 計算格子間 隔は ΔX=0.05m, Δy=0.05m とした. また, 底面に厚さ 0.05m の一様な砂層を設けた.計算に用いた諸量を表-1 に示す. 今回は現地において計3回観測された観測結 果を対象とし、3回目のみ観測結果が2つ存在したた め, case3.1, case3.2 としている. なお, 砂浜の自然状 態を再現するため、十分に流下距離を確保した風上か ら45m地点での高さ150cmまでの風速及び飛砂量デー タを比較に用いた. 高さを 150cm までとした理由は, 現地観測において地上 2.5~150cm の高さで採取され た飛砂量データを使用しているためである.計算時間 は現地観測データとの比較の際に流れが十分に発達し た定常状態であるとみなせる状態となるように 180 秒 間とし、計算時間間隔は0.002 秒とした.

表-1 計算に用いた諸量

	case1	case2	case3.1	case3.2
風速U _{3.5} (m/s)	8.8	6.78	7.98	9.91
砂の粒径 d (mm)	0.24			
砂の密度 $\rho_s (kg/m^3)$	2650			
乱流運動エネルギー	0.121	0.075	0.101	0.150
k (m²/s²)	0.121	0.075	0.101	0.150
分子粘性散逸率	0.179	0.097	0.127	0.245
ε (m ² /s ³)	0.178	0.087	0.137	0.245

Keys Words:飛砂,新潟海岸,現地スケール,数値解析 連絡先:〒970-8034 福島県いわき市平上荒川字長尾 30 福島工業高等専門学校 都市システム工学科

5. 数值解析結果

図-1 に全ケースの風速分布を示す.先に述べたよう に風速の観測データは高さ 3.5m のデータなので, Bagnold³⁾の式を用いて,風速鉛直分布を算出し,その 値を観測データとしている.全ケースにおいて,乱流 の特徴を捉えた分布を示し,モデルの妥当性は確認で きたが,再現性の精度という観点からは分布形の中腹 の速度勾配が急になる傾向が見られた.この点は今後 の検討が必要である.

図-2~4 にケース毎の飛砂量分布を示す.ただし, case3.1 と 3.2 に関しては,同一観測日のため一つにま とめた.全ケースにおいて,周囲流体である空気の密 度に比べて固体粒子である砂の密度が大きいため飛砂 量が底面から急激に減少するという飛砂の特徴を捉え た分布形を示した.また,底面直近においては観測結 果との良好な一致を示しているが,底面から高さ約 10cmを越えたあたりから解析結果が小さい傾向が見 られたことから,底面付近での砂粒子の浮上と降下を さらに精度良く再現する必要性があることがわかった.

6. まとめ

本研究では,提案したモデルが新潟海岸の海浜平坦 部で観測された飛砂の主たる計測量である風速分布, 飛砂量分布を表現できることが確認された.

今後はモデルの再現性を高め、砂防フェンスなどの 海岸砂防構造物を設置した箇所での数値解析を行うこ とによって、より有益なデータが得られると考えられ る.

参考文献

- B.G.M. van Wachem : Derivation, Implementation, and Validation of Computer Simulation Models for Gas-Solid Fluidized Beds, Ph.D. Thesis, Delft University of Technology, Amsterdam, pp.201, 2000.
- 佐藤愼司,大谷靖郎,橋本新,堀口敬洋:新潟海岸における飛砂の実態と防砂フェンスの機能,海岸工学論文集, 第46巻, pp.496-500,1999.
- Bagnold, R. A. : The Physics of Blown Sand and Desert Dunes, Mathuen & Co.Ltd., pp. 256, 1954.