新潟大学大学院自然科学研究科	学生会員	中川 慧
新潟大学工学部	正会員	阿部 和久
新潟大学工学部	正会員	紅露 一寬

1 はじめに

鉄道軌道のレール継ぎ目部は,軌道破壊や乗り心地 の悪化,騒音などにつながり弱点箇所となる.その解 決策としてロングレールの導入が挙げられる.しか し,ロングレールはまくらぎにより拘束されるため, 中央部が不動区間となり,温度変化によるレール軸力 が発生する.特に,夏の高温時において,軌道座屈が 発生する可能性が高まる.そのため,ロングレールで は座屈の保守管理を適切に行う必要がある.

鉄道軌道において,軌道座屈温度は,空間方向にば らつきを有する初期通り変位に大きく依存する.そ のため,本研究室では初期通り変位と軌道座屈の確率 的関係について検討してきた¹⁾.その際に,軌道状態 を反映させた数値モデルを用いた.なお,当該解析で は,1つの初期通り変位が設定されると,それに対応 した座屈温度を求めることが可能である.現在,軌道 変位の10m 弦正矢データが高密度に測定可能となっ ている²⁾.これより,通り変位の原波形が復元できれ ば,上述の解析により座屈を生ずる箇所と温度を予測 可能になるものと考えられる.

本研究では,離散正弦変換に基づいた初期通り変位 の表現方法の枠組みで,10m 弦正矢データからの通 り変位波形の復元法を構築し,その有効性について検 討する.

2 10m 弦正矢について

10m 弦正矢は, 図-1 のように, レールに長さ 10m の弦をあて, その中央における弦とレールとの距離に より与えられる.

図-1 10m 弦正矢

よって、10m 弦正矢 y(x) は次式により表すことができる.

$$y(x) = w(x) - \frac{1}{2} \left\{ w\left(x - \frac{l}{2}\right) + w\left(x + \frac{l}{2}\right) \right\}$$
(1)

ここで,wは通り変位,l = 10m である. 式(1)をフーリエ変換すると次式を得る.

$$\hat{y}(k) = \left\{1 - \cos\left(\frac{kl}{2}\right)\right\} \hat{w}(k) \tag{2}$$

ここで, k は波数である.

式 (2) において $1 - \cos\left(\frac{kl}{2}\right) = 0$ となる次の条件下 では $\hat{w}(k)$ を求めることが不可能となる.

$$\lambda = \frac{l}{2n}$$
 (n = 0, 1, 2, ...) (3)

l = 10m より,波長 λ が ∞ ,5m,2.5m,...のとき,式 (2) より $\hat{w}(k)$ が求めることが不可能となる.特に,測 定ノイズ存在下では w の復元精度が低下する.よっ て,これへの対処が必要となってくる.

3 離散正弦変換

まず、図-2のようなx = 0, Lで値が0となる離散 通り変位データを考える.

図-2 離散通り変位波形

通り変位を表現する関数基底として次の関数を用 いる.

$$\bar{g}_j(x) = \sin\left(\frac{\pi}{L}jx\right) \tag{4}$$

このとき,通り変位は展開係数 ŵ により次式で表 すことができる.

$$w(x) = \sum_{j}^{\infty} \hat{w}_j \bar{g}_j(x) \tag{5}$$

 $0 \le x \le L \ c \ N + 1$ 個の離散点を等間隔に置き, $x_i = i\Delta x (\Delta x = L/N)$ におけるたわみを $w_i = w(x_i)$ とする. i = 1, ..., N - 1 に対して,次式が成り立つよ うに \hat{w}_i を定める.

$$w_i = \sum_{j=1}^{N-1} \hat{w}_j g_{ij}$$
 (6)

$$g_{ij} = g_j(x_i) = \sqrt{\frac{2}{N}} \sin\left(\frac{\pi}{N}ij\right)$$
 (7)

よって、 \hat{w}_j は形式的には次のように求めることができる.

$$\hat{w}_i = \sum_{j=1}^{N-1} g_{ij}^{-1} w_j \tag{8}$$

ここで、 g_{ij}^{-1} は次式で与えられる.

$$g_{ij}^{-1} = g_{ij} = \sqrt{\frac{2}{N}} \sin\left(\frac{\pi}{N}ij\right) \tag{9}$$

式 (1) に式 (6),(7) を代入し,計算すると以下のようになる.

$$y(x) = \sum_{j} g_{j}(x)\hat{w}_{j}$$
$$-\frac{1}{2}\sum_{j} \left\{ g_{j}\left(x - \frac{l}{2}\right) + g_{j}\left(x + \frac{l}{2}\right) \right\} \hat{w}_{j} \quad (10)$$
$$= \sum_{j} \left\{ 1 - \cos\left(\frac{l\pi}{2L}j\right) \right\} g_{j}(x)\hat{w}_{j}$$

式 (10) より,
$$y_i = y(x_i)$$
 に対して、次式を得る.
$$y_i = \sum_{j} \left\{ 1 - \cos\left(\frac{l\pi}{2L}j\right) \right\} g_{ij} \hat{w}_j \qquad (11)$$

また,

$$\begin{bmatrix} \boldsymbol{H} \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_{ij} \end{bmatrix}$$

$$h_{ii} = 1 - \cos\left(\frac{l\pi}{2L}i\right), \quad h_{ij} = 0 (i \neq j) \quad (12)$$

とおくと,式(11)は次のように表すことができる.

$$\{\boldsymbol{y}\} = [\boldsymbol{G}\boldsymbol{H}]\{\boldsymbol{\hat{w}}\} \tag{13}$$

 $\{\hat{y}\} = [G]\{y\}$ と表せば、次式を得る.

$$\{\hat{\boldsymbol{y}}\} = [\boldsymbol{H}]\{\hat{\boldsymbol{w}}\}$$
(14)

よって,次式を得る.

$$\hat{y}_i = \left\{ 1 - \cos\left(\frac{l\pi}{2L}i\right) \right\} \hat{w}_i \tag{15}$$

4 目的関数の設定

原波形の復元方法として離散正弦変換に基づく通り 変位表現の下,当初は EM アルゴリズム³⁾に基づいた 推定法を構成した.しかし,当該法ではノイズによる 精度低下の十分な抑制が困難であったため,推定法を 以下のとおり修正した.

ベイズの定理より,次式が成り立つ.

$$p(\hat{w}|\hat{y}) \propto p(\hat{y}|\hat{w})p(\hat{w}) \tag{16}$$

ここで, $p(\hat{w}|\hat{y})$ は \hat{y} が与えられた下での \hat{w} の条件付き確率である.

式 (15) より, 測定データ {ŷ} は次の関係を有する.

$$\hat{\bar{y}}_i = \left\{ 1 - \cos\left(\frac{l\pi}{2L}i\right) \right\} \hat{w}_i + \hat{\varepsilon}_i \tag{17}$$

ここで, $\hat{\epsilon}_i$ は y_i の測定ノイズに対応する成分である. 式 (13) より, {**y**} と {**w**} には次の関係が存在する.

$$\{y\} = [GHG]\{\hat{w}\} + \{\varepsilon\}, \quad ([G]\{w\} = \{\hat{w}\})$$
(18)

ここで、 $\{\varepsilon\}$ は測定ノイズを成分に持つベクトルである. 各成分 ε_i が期待値ゼロ、分散 σ_{ε}^2 で、互いに独立な Gauss ノイズと仮定する.

式(17)の{ (ĉ } は次式で与えられる.

$$\{\hat{\boldsymbol{\varepsilon}}\} = [\boldsymbol{G}]\{\boldsymbol{\varepsilon}\} \tag{19}$$

これより,次式を得る.

$$E(\hat{\boldsymbol{\varepsilon}}) = [\boldsymbol{G}] \{ E(\boldsymbol{\varepsilon}) \} = \{ \boldsymbol{0} \}$$
(20)

ここで, $E(\hat{\epsilon})$ は $\{\epsilon\}$ の期待値である.

また,次式より, $\{\hat{e}\}$ は分散 σ_{ε}^2 で互いに独立な Gauss ノイズであることが分かる.

$$E(\hat{\varepsilon}\hat{\varepsilon}^{\mathrm{T}}) = [\mathbf{G}]E(\varepsilon\varepsilon^{\mathrm{T}})[\mathbf{G}]$$
$$= \sigma_{\varepsilon}^{2}[\mathbf{G}\mathbf{I}\mathbf{G}]$$
$$= \sigma_{\varepsilon}^{2}[\mathbf{I}]$$
(21)

以上より, $p(\hat{y}|\hat{w})$ は,

期待値が $\hat{y}_i = \{1 - \cos\left(\frac{l\pi}{2L}i\right)\}\hat{w}_i$, 分散が σ_{ε}^2 の互い に独立な Gauss 分布で与えられることがわかる.よっ て, $p(\hat{y}|\hat{w})$ の指数部は次式で与えられる.

$$-\frac{1}{2\sigma_{\varepsilon}^{2}}\|\hat{\boldsymbol{y}}-\hat{\boldsymbol{y}}\|^{2}$$
(22)

次に $p(\hat{w})$ について考える. w が期待値ゼロ,自己 相関関数 R(x) のランダム波形で与えられているもの とすると,次式を得る.

$$E(\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}}) = [\boldsymbol{C}]$$

$$c_{ij} = R(|i-j|\Delta x)$$

$$c_{ii} = R(0) = \sigma_{w}^{2}$$
(23)

よって, {**ŵ**} は次の条件を有する.

$$E(\hat{\boldsymbol{w}}) = [\boldsymbol{G}]E(\boldsymbol{w}) = \{\boldsymbol{0}\}$$
(24)

$$E(\hat{\boldsymbol{w}}\boldsymbol{w}^{\mathrm{T}}) = [\boldsymbol{G}\boldsymbol{E}(\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}})\boldsymbol{G}]$$
$$= [\boldsymbol{G}\boldsymbol{C}\boldsymbol{G}] \qquad (25)$$

以上より、p(ŵ)の指数部は次式で与えられる.

$$-\frac{1}{2}(\hat{\boldsymbol{w}}^{\mathrm{T}}\hat{\boldsymbol{C}}^{-1}\hat{\boldsymbol{w}})$$
(26)

式 (22) と式 (26) より, $p(\hat{y}|\hat{w})p(\hat{w})$ の指数部は次式 で与えられる.

$$-\frac{1}{2\sigma_{\varepsilon}^{2}}\|\hat{\boldsymbol{y}}-\hat{\boldsymbol{y}}\|^{2}-\frac{1}{2}(\hat{\boldsymbol{w}}^{\mathrm{T}}\hat{\boldsymbol{C}}^{-1}\hat{\boldsymbol{w}})$$
(27)

よって,{**ŵ**} を推定する目的関数 *J* を以下のように 設定する.

$$J = \frac{1}{2\sigma_{\varepsilon}^2} \|\hat{\boldsymbol{y}} - \hat{\boldsymbol{y}}\|^2 + \frac{1}{2} (\hat{\boldsymbol{w}}^{\mathrm{T}} \hat{\boldsymbol{C}}^{-1} \hat{\boldsymbol{w}}) \qquad (28)$$

本研究では $[\hat{C}^{-1}]$ を次の対角行列で近似する.

$$[\hat{\boldsymbol{C}}^{-1}] = \begin{bmatrix} \ddots & & & \\ & \sigma_{wi}^{-2} & & \\ & & \ddots \end{bmatrix}$$
(29)

式 (29) より,式 (28) に最小条件を適用すると次式 を得る.

$$\hat{w}_i = \frac{h_i}{h_i^2 + \frac{\sigma_{\tilde{\varepsilon}}^2}{\sigma_{wi}^2}} \hat{y}$$
(30)

ここで、 $h_i = 1 - \cos(k_i l/2)$, $(k_i \text{ は離散波数})$ である. ハイパーパラメータ $\sigma_{\varepsilon}^2, \sigma_{wi}^2$ の推定にあたり、MAP 推定³⁾を適用すると、多少の計算の後に次式を得る.

$$\left(N - \sum_{i} \frac{h_i^2}{h_i^2 + \frac{\sigma_{\varepsilon}^2}{\sigma_{w_i}^2}}\right) \sigma_{\varepsilon}^2
= \sum_{i} \hat{y}_i^2 - \sum_{i} \left(h_i^2 + 2\frac{\sigma_{\varepsilon}^2}{\sigma_{w_i}^2}\right) \hat{w}_i^2$$
(31)

$$\sigma_{wi}^2 = \frac{\sigma_{\varepsilon}^2}{h_i^2 + \frac{\sigma_{\varepsilon}^2}{\sigma_{wi}^2}} + \hat{w}_i^2 \tag{32}$$

ここで, N は測点数である.

以上より, 推定手順は以下のようになる.

手順 1:式 (30) より \hat{w}_i を推定する.

手順 2:式 (31),(32) より $\sigma_{\varepsilon}^2, \sigma_{wi}^2$ を求め,手順 1,2 を 収束するまで繰り返す.

5 通り変位の作成

通り変位波形の標準偏差を σ_r ,通り変位の相関長 をdとし、原波形の距離相関関数を次式により表すこ ととする.

$$R(x) = \sigma_r^2 e^{-(x/d)^2}$$
(33)

長さLの軌道区間を,N+1個の測点数で等分割 する.その際,i番測点のx座標 x_i を次式で与える.

$$x_i = i\Delta x, \ (i = 0, ..., N), \ \Delta x = \frac{L}{N}$$
 (34)

レール通り変位波形の x_i における値を w_{0i} とし、その離散データを成分にもつベクトルを { W_0 } とおく、 当該ベクトルに関する分散・共分散行列を [C] とする と、 { W_0 } は次式により生成することができる.

$$\{\boldsymbol{W}_0\} = [\boldsymbol{\Phi}][\boldsymbol{\Lambda}^{1/2}]\{\boldsymbol{\xi}\} \tag{35}$$

ここで、 $[\Lambda^{1/2}]$ は[C]に関する固有値問題の固有値の 平方根 $\sqrt{\lambda_i}$ を対角項に持つ対角行列、 $[\Phi]$ は固有ベク トル $\{\phi_i\}$ を縦ベクトル成分に持つ行列、 $\{\xi\}$ は期待 値ゼロ、分散1の標準正規乱数を成分に持つベクトル である.

6 解析結果

表−1 各設定値		
$\sigma_r(m)$	0.005	
d(m)	1.7	
$\sigma_{\varepsilon}(\mathrm{m})$	0.0005	
$\sigma_w(m)$	0.005	

今回の解析では、軌道の測定区間長を 200m, 軌道 両端を含めた観測点数を 201 個とした.その他の各種 設定値は**表-1** のように与えた.なお,**表-1** において σ_{ε} は 10m 弦正矢の測定ノイズの標準偏差, σ_{w} は通り 変位原波形の離散正弦変換の標準偏差の推定値をそれ ぞれ表している.

通り変位波形の離散正弦変換と原波形の推定値について EM アルゴリズムによる結果と,本手法とで比較する (図-3).推定精度が低下する 2.5m 波長と 5m 波長では両者とも0付近に収束したが,無限波長では本推定法がより小さな値へと収束し,無限波長でも本推定法はある程度の精度でノイズを抑制できることが 窺える.

通り変位波形の推定結果を図-4に示す. 図より, EM アルゴリズムによる復元の方が,多少精度が劣ってい ることがわかる. 原波形とその推定値は多少の差はあ るものの,概ね一致していることから,通り変位波形 自体の復元は良好であることがわかる.

図-5 は, 波数と分散推定値との関係を表したもの である. 波数が 1.25, 2.5(1/m) で分散値の低下が認 められるが, これは当該波数成分のノイズによる精度 低下抑制の結果によるものである.

測定ノイズの標準偏差と反復回数との関係を,図-6 に示す. どちらの手法も反復回数が 30 回程度で値が 収束しているが,その収束値は EM アルゴリズムによ る推定法では 0.00012 程度,本推定法では 0.0004 付 近をとった.表-1 より, σ_{ε} は 0.0005(m) が正解であ ることから,本推定法の方が高い推定精度を有するこ とがわかる.

7 おわりに

本研究では, 原波形の復元方法として離散正弦変換 に基づく通り変位表現の下, EM アルゴリズムに基づ いた推定法と新しく導出した推定法を用い, 比較・検 討した.その結果, EM アルゴリズムより本推定法の 方が精度面でも原波形復元に適しているという結果を 得た.

謝辞 本研究は科研費 (20K04661) の助成を受けたも のである.ここに記して謝意を表する.

参考文献

- 阿部和久,水野雄太,紅露一寛:通り変位波形におけるバラツキが軌道座屈強度の確率特性に及ぼす影響, 鉄道工学シンポジウム論文集24号167-174,2020.
- 坪川洋友,矢澤英治,小木曽清高,南木聡明:車体装架 型慣性正矢軌道検測装置の開発,鉄道総研報告,26(2), 7-12,2012.
- 3) 関原謙介:ベイズ信号処理,共立出版,2015.