半島陰影部に位置する古賀海岸での海象変動に関する研究

1. はじめに

2017年8月11日に福岡県古賀市の古賀海岸(図 -1)において、子ども2人を含む4名が沖に流さ れる事故が発生した.事故が起きた海岸は2つの 突堤と人工リーフで構成されたポケットビーチ である.本研究では、データ解析や数値計算によ り、事故発生時の気象および海象を把握し、事故 発生のメカニズムを明らかにすることを試みた.

図-1 古賀海岸周辺地形

2. 現地調査概要

現地調査は2017年9月10日に行った.海面着 色剤による流れの可視化(図-2)や地形調査(図-3)を行い,結果を本研究に用いた.調査時は有義 波高0.29m,周期3.4sであった.この調査では15cm/s 程度の沖方向への流れが生じ、20mほど流れた後,岸 に沿った流れに遷移した.これより,低波浪状態でも 離岸流が発生することを確認した.

図-2 UAV による着色剤での流れの確認の様子

長岡技術科学大学大学院 高橋 直紀 長岡技術科学大学 正会員 犬飼 直之

図-3 古賀海岸の地形測深結果

3. 事故発生時の気象・海象など各成分の検討

(1) 波高と波向の傾向

Nowphas 玄界灘観測所¹⁾における 2006 年から 2015 年における波高と波向の出現頻度分布を図-4に示す. この海域における傾向としては波向「北北東」が卓越 していることが挙げられる.この傾向は事故発生月と 通年のデータを比較しても同様である.また,波高は 1.0m 前後の割合が多いが,波向「北北東」時は約 13% が波高 2m 以上になっており,比較的高波浪であ る.

波向「北北東」時,古賀海岸は半島の影になっ ているため,減衰した波が入射する.事故当時, 現地には遊泳の危険性を喚起する看板があった が,卓越波向では通年で比較的静穏状態になり, 海岸に訪れる人が多いのではないかと考えられ る.

(2) 河川流出流

事故の前日から雨雲はほとんど福岡県を通過して おらず,事故現場に近い大根川の庄橋水位観測所²⁾(河 口から約2km)では水位の変動が10cm 未満だったこ とから河川流出流による影響は小さいと考えられる.

(3) 吹送流

海上風による影響を考慮するために、吹送流の検討 を行う必要がある.ここでは、犬飼らの手法³⁾を参考 に、式(1)から式(4)に示すように、静水圧近似した運動 方程式および連続式を陽的に差分した数値モデルを 用いて現場海域付近の吹送流の数値実験をおこなっ た.使用した地形情報は500mメッシュ水深データ⁴⁾ で、表層から1m,5m,10m,それ以深の4層に区切 った.図-5に九州北西部沿岸を対象に行った計算の 結果を示す.計算は事故発生時の状況(風速7m/s,風 向 NNW)を仮想し、4時間の吹送を行った.古賀海 岸付近では上方から下方へ沿岸部に沿うように吹送 流が進行しており、弱い循環流が生成している.一般 に吹送流は風速の2~4%程度と言われているが、本計 算結果ではそれを大きく下回るため、吹送流による大 きな海象変動は無かったと考えられる.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv + g \frac{\partial \zeta}{\partial x} - A_h \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - A_v \frac{\partial^2 v}{\partial z^2} = 0$$
(2)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial \zeta}{\partial y} - A_h \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - A_v \frac{\partial^2 v}{\partial z^2} = 0$$
(3)

$$-P_wg - \frac{\partial P}{\partial z} = 0 \tag{4}$$

u,v,w:流速(m/s),*h*:水深(m),*f*:コリオリ係数 *A_h*:水平渦動粘性係数,*A_z*:鉛直粘性係数

図-5 九州北西部沿岸での吹送流の流速・ベクトル分布

(4) 潮汐流

図-6 に事故発生日と現地調査日における博多東浜での潮位の推算値。を示す.事故発生日と現地調査日の両日ともに正午ごろに満潮となってその後18時くらいまで下げ潮という傾向であった.下げ潮が最大流速となるのは15時ごろであり,事故発生時間の後である.事故が正午過ぎに発生したとすれば、下げ潮の影響を多大に受けたとは考えにくく、潮汐流の影響は小さいと思われる.

(5) 波浪

事故発生日における Nowphas 玄界灘での波高の経 時変化を図-7 に,波向の経時変化を図-8 に示す.こ れらは各プロット 20 分間の平均である.図-7 より, 波高は昼ごろに最も高くなっており,11:40 には1.73m を記録している.次に,図-8 より,ほぼ全ての時間帯 で波向は「北北東」だが,11:20 と 12:20 に波向が「北 北西」となっている.

図-8 波向の経時変化

図-9 に古賀海岸への波浪の入射の概念図を示す. 波向「北北西」時は遮蔽物もなく,沖から古賀海岸へ 波浪が減衰することなく直接入射する. 玄界灘で卓越 している波向「北北東」時は島や半島の影になってい るため,回折によって波高は減衰すると考えられる. 本研究ではこの二つのパターンの波向について検討 を行った.

図-9 波向別による古賀海岸へ到達する波浪の特性

まず,波向「北北西」時の波浪が直接古賀海岸に入 射する形式について検討した. Nowphas 玄界灘と古賀 海岸は平行距離約 20km である(図-10). 続いて,式 (5)のから波群速度 C_g を求めることで、Nowphas 玄界 灘において観測された波向き「北北西」の波浪が古賀 海岸に到達するのに $L/C_g = 60$ 分を要することが分か り、事故発生日の 12:20 に観測された波向「北北西」 の波浪は 13:20 過ぎに古賀海岸に到達すると考えられ る. つまり、13:20 前後でそれまで回折波だった波浪 が減衰することなく、古賀海岸へ直接入射するように なり、突然高波浪状態になったと考えられる.

図-10 古賀海岸と Nowphas 玄界灘の位置

 $C_g = \frac{C}{2} \left(1 + \frac{2kh}{\sinh 2kh} \right) \quad (5)$ $C_g:$ # isgg(m/s), C: isgim (m/s), k: isgim (m)

次に、半島の陰になっている古賀海岸に回折波が 入射する場合について述べる. 図-4 と図-8 から分か るように、この海域では波向「北北東」が高頻度で ある.まず、半島部を一直線の防波堤として想定し たイメージを図-11 に示す.この仮想防波堤の最も近 くを通過する波向「北北東」の波浪と防波堤の成す 角は30°であり, Sommerfeld の光の回折理論を波に 応用した図(図-12)より,回折係数を求めることが できる.

図-11 半島部を防波堤と想定したイメージ

事故発生時の周期は7.2s, 波長は約70mであり,半島の上端から下端までの距離を波長で除すと

y方向には大きく逸脱してしまうが、概ね回折係数は0.2 程度と求められる. 続いて、式(6)から任意地点(半島の下端部)の波高を求める.

$$H_A = H_0 \times K_d \tag{6}$$

θ:入射角, L:波長(m),
x・y:任意地点の座標,K_d:回折係数

Nowphas 玄界灘で観測された有義波高が 1.4m 程度 であった場合,半島の下端部では波高約 0.3m 程度と なる.ここから湾部に進行するとさらに波高は減少す ると考えられ,古賀海岸付近では比較的穏やかな海象 となる.

4. 砕波の検討

古賀海岸に打ち寄せる波の砕波についての検討を 行った. 図-13に古賀海岸の汀線からの距離による有 義波の波高変化を示す. 図-13に使用した海底地形の データは2017年9月10日に現地で測深した結果(図 -3)を元にしている.

$$\xi_0 = \frac{tan\beta}{H_0 \times L_0} \tag{7}$$

 H_0 : 沖波波高(m), L_0 : 沖波波長(m), β : 海底勾配

上式より, 気=0.15 となった汀線から 80m, 水深 1.9m 地点で砕波することが分かった.以上の結果か ら,事故発生時の古賀海岸における砕波形式は崩れ波 砕波と考えられる⁷. この形式は尖った波峰と波形の 対称性が大きいことが特徴として挙げられ,勾配が緩 い海岸に波形勾配の大きな波が入射する場合に見ら れる.

5. まとめ

四つの流れ成分について検討を行ったが、河川流出 流、吹送流、潮汐流の影響は小さいと考えられる.

玄界灘で卓越している波向「北北東」時は様々な変 形を経たのち、半島部での回折により波浪が減衰する ため、古賀海岸において波高は大きくなりにくい.

波向が「北北西」に遷移して波浪が直接入射する 場合は、Nowphas 玄界灘で観測された波浪が約60分 後に古賀海岸に入射すると考えられる.事故発生時 間前に波向が「北北東」から「北北西」に遷移して おり、このときの波向で古賀海岸に波浪が減衰せず に直接入射したことで波高が増大し、結果的に地形 性(図-12)に起因した沖向きの流れが発生したと考 えられる.今後はシミュレーション等で人工リーフ より岸側の流況把握を行うことで、事故発生時の流 れをより詳細に把握したい.

図-12 古賀海岸の流出方向イメージ

参考文献

- 1) (独法)港湾空港技術研究所:NOWPHAS (全国港湾海洋波 浪情報網) (オンライン),国土交通省
- 2) 河川水位情報 庄橋水位観測所
- 大飼直之,早川典生,福嶋祐介,Peter SHENG:直線状海岸 付近の吹送流による水位変動についての研究,海岸工学論 文集,第48巻, pp.391-395, 2001.
- 日本海洋データセンター: 500m メッシュ水深(オンライン)
- 5) 海上保安庁 海洋情報部 潮汐推算
- 6) 川西 澄:海岸工学テキスト:pp.8
- 7) 水理公式集(昭和 60 年版): pp.505-510