1. はじめに

古い基準に準じた RC 製単柱橋脚(以下, RC 橋脚) の設計では、断面の作用力に合わせて配筋を減らす 段落とし部を設けている.このような軸方向鉄筋段 落とし部を有する橋脚は、兵庫県南部地震および新 潟県中越地震では、多くの橋脚が損傷によって倒壊 や破壊に至った.そのような状況を踏まえ、緊急輸送 道路としての機能を確保するため、昭和55 年道路橋 示方書より古い基準を適用した橋梁のうち、新幹線 および高速道路をまたぐ橋梁の耐震補強が優先的に 実施された¹⁾。その中に、段落とし部のせん断耐力お よび曲げに対する靱性が不足したため、アンカーな しで巻き立て鋼板のみで補強される事例が多く見ら れるが、研究例は多くないのが現状である.

本研究では,段落とし部を有する円形断面の張出 式 RC 橋脚を対象とし,鋼板巻立のみによって補強 前後の変形挙動について有限要素解析による漸増載

青木あすなろ建設㈱	劉 翠平 藤	本和久
長岡技術科学大学	宮下 剛	
青木あすなろ建設㈱	牛島栄	

荷解析を行い,基礎的な検討を試みた.水平変位およ び断面の応力低減効果を比較し,橋脚の耐震性能の 向上を定量的に把握することとした.

2. 対象 RC 橋脚

図1に段落としを有する円形断面の張出式 RC 橋 脚 P9 および P10 の断面寸法を示す. なお, P9 には 上部工からの荷重が 331mm に橋軸直角方向に偏心 して作用している.

表1 に軸力および横拘束筋を考慮した各断面の耐 力をまとめる. P9 および P10 の段落とし位置と橋脚 基部の初降伏耐力の比が 1.20 以下であり,段落し部 の損傷が先行すると判断されたため,兵庫県南部地震 以降に,基部の曲げ破壊先行型となるように鋼板巻立 工法によって段落とし部の補強を行っている. なお, 補強部はフーチングに定着せず,鋼板巻立のみによっ て躯体の曲げ・せん断耐力を向上させる. そのため, 基礎構造へ伝達させる地震力の増加はない.

橋脚		せん断耐力	曲げ耐力 (×10 ³ kN・m)			初降伏耐力の比		
		Q_u (×10 ³ kN)	Mc	M_{y0}	M _{ls2}	M _{ls3}	橋軸方向	橋軸直角方向
	断面 I-I (断面 I'-I')	2.961 (9.753)	8.580 (9.420)	24.630 (29.919)	33.854 (49.834)	33.854 (50.526)	1.18 (1.42)	1.01 (1.22)
Р9	断面 II-II (断面 II'-II')	4.301 (10.569)	9.355 (10.259)	37.834 (39.706)	54.706 (70.814)	54.706 (71.903)		
	断面 III-III (断面 III'-III')	5.132 (5.151)	9.750 (9.830)	42.522 (42.682)	63.239 (63.469)	63.239 (63.109)		
	断面 I-I (断面 I'-I')	2.961 (9.773)	8.423 (10.388)	24.295 (39.920)	33.486 (71.076)	33.486 (72.170)	1.15 (1.38)	0.99 (1.19)
P10	断面 II-II (断面 II'-II')	4.301 (10.569)	9.392 (10.259)	37.903 (39.706)	54.776 (70.814)	54.776 (71.903)		
	断面 III-III (断面 III'-III')	5.132 (5.235)	9.715 (10.127)	42.461 (43.290)	63.177 (64.399)	62.819 (64.026)		

表1 各断面における耐力の算定値²⁻⁴⁾

注:1)()内に補強後のせん断耐力および曲げ耐力をそれぞれ表す.

2) M_c, M_{y0}, M_{ls2}および M_{ls3}はそれぞれひび割れ時, 初降伏時, 耐震性能 2 および耐震性能 3 に対する限界モーメントである.

3. 有限要素解析および解析結果

(1) 解析概要

2章に示す非補強および補強のRC橋脚を対象とし、 非線形有限要素解析 (FEM)を実施した.解析モデル の記号を表2に示す.

解析にはDiana10.2を使用し、コンクリートを2次ソ リッド要素、補強鋼板をシェル要素、柱部分の軸方向 鉄筋を埋め込み鉄筋Bar要素、梁およびフーチング部 分の鉄筋を埋め込み鉄筋Grid要素でそれぞれモデル 化した.また、上部工と梁の上面およびフーチングの 底面にInterface要素を使用し、積層ゴム支承の等価剛 性および杭基礎のバネ係数を与えた.

耐震設計における上部構造の慣性力作用位置および、上部工からの荷重による応力集中の緩和を考え、 軸方向のモデルには梁の上に弾性となるシェル要素、 軸直角方向のモデルには質量0の弾性ソリッド要素 をそれぞれ設けた.モデルのメッシュ分割の例を図2 に示す.

図3に示すように鋼材の応力-ひずみ関係はvon Misesの降伏条件を考え、二次剛性は初期剛性の 1/1,000, Bi-linearモデルとした. ヤング係数は 2.0×10⁵N/mm²,ポアソン比は0.3、単位体積重量を 7.7ton/m³とする. コンクリートの応力-ひずみ関係 を図4に示す. 圧縮強度をコンクリートの設計基準強 度21.0N/mm²とし、圧縮軟化曲線にはParabolic式,引 張軟化曲線にはHordijk式を用いた。

載荷方法を図5に示す.mo,miおよびgは上部工,下

部工の質量および重力加速度をそれぞれ表す. 自重 による初期応力状態を導入した後,上部工および橋 脚全体に単調漸増荷重(慣性力)として,設計用荷重 あるいは照査用荷重を(水平変位を橋脚高の1/50とな るまでに)与えた.

表2 解析モデル

ተ	デル	補強の有無	荷重の作用方向		
	ae-P9	なし	场神子向		
橋	ar-P9	あり	「同中ロノノ」「リ		
府 P9	re-P9	なし	场种百分士向		
	rr-P9	あり	简 靶 <u>间</u> 月 刀 问		
	ae-P10	なし	扬曲士白		
橋	ar-P10	あり	「同中ロノノ」「リ		
_{所不} P10	re-P10	なし	插動直名士向		
•	rr-P10	あり	1 111111111111111111111111111111111111		
<i>h</i> g:上部工の重心までの距離					
上部工の質量 上部工の質量 Interface要素 (弾性・厚さ h ・質量の					

(2) 解析結果

橋脚P9およびP10は図5に示す設計荷重を作用した 際にFEM解析による漸増載荷解析の結果においても, 段落とし位置および基部のせん断耐力,曲げに達し ていなかったことを確認した.

また,対象橋脚の段落とし部は補強され,問題がないと考えられるため,耐震照査に用いた照査用荷重 を受ける場合に橋脚の基部に着目し,解析結果を示す.

1) 荷重~変位関係曲線および耐力

基部に作用したせん断力_{base}Qおよび曲げモーメン

トbaseMと変位 δ の関係曲線に, **表1**に示すせん断耐力 および曲げ耐力を重ねて図6~図9に示す. なお, δ は 梁上端中心位置に慣性力の作用方向の変位である. また,**表3**に解析によって得られたせん断耐力 $femQ_u$, 曲げ耐力の $femM_{ls2}$ と**表1**に示す算定値との比較を行う.

表3に示すように、いずれの解析モデルも*femMs12と Ms12*の比は1.0に近い値となったので、このような橋 脚のFEMモデルは妥当であると考える.また、橋脚 P9およびP10は補強後に耐震性能2および耐震性能3 に対する限界モーメントを確保されていることを確 認した.

モ	デル	_{fem} Qu (kN)	_{fem} Mst2 (kN ⋅ m)	femQu Qu	_{fem} M _{sl2} / M _{sl2}
	ae-P9	5.846	63.306	1.14	1.00
橋	ar-P9	5.978	64.508	1.16	1.02
府 P9	re-P9	5.051	62.268	0.98	0.98
17	rr-P9	5.366	65.898	1.04	1.04
	ae-P10	5.736	63.003	1.12	1.00
橋	ar-P10	6.297	69.472	1.20	1.08
_{所却} P10	re-P10	4.857	60.711	0.95	0.96
110	rr-P10	5.411	67.8288	1.03	1.05

表3 せん断および曲げ耐力の解析値

2) 基部の初降伏時の橋脚天端の水平変位の比較

補強前後について,**表4**に初降伏時における荷重方向の変位 δ_{My0} をまとめる.表に示すように,補強後に荷重方向の変位が約2割程度の低減が見られた.

	橋脚	橋軸方向	橋軸直角方向
	補強前	62.697	71.088
P9	補強後	47.582	55.824
	補強前/補強後(%)	0.76	0.79
P10	補強前	63.877	62.325
	補強後	46.338	48.123
	補強前/補強後(%)	0.73	0.77

表4 基部の初降伏時における荷重方向の変位

3) 基部に生じる応力の比較

基部に作用した曲げモーメント $_{base}M$ は55×10³kN・ m(約0.85 M_{sl2})時に,基部に生じる柱軸方向の応力 σ_{zz} 分布コンター図を図10に示す.

補強後に引張応力となる領域の応力が低減したこ

とを確認したが、圧縮応力となる領域については明 瞭な優位性が見られなかった.これについては、1章 に述べたようにアンカーなしでの鋼板巻立補強は靭 性向上を目標としており、曲げ耐力の補強ではない ためである.

4. まとめ

本研究では,鋼板巻立補強の段落とし部を有する 円形断面の張出式 RC 橋脚を対象とし,FEM による 慣性力の漸増載荷解析を行った.以下に,得られた知 見をまとめる.

- (1) 補強前後のモデルについて、せん断および曲げ耐力の解析値と算定値との比較を行った結果、モデルは妥当であると考えられる.
- (2) 補強後に, 耐震性能2および耐震性能3に対する 限界モーメントを確保されており, 基部の初降伏 時に橋脚天端の水平変位が約2割程度低減した.
- (3) 基部に作用した曲げモーメントが0.85M_{s12}に達す る際に, 柱軸方向に引張応力となる領域の応力が 低減したことを確認した.

参考文献

- 国土交通省:「緊急輸送道路の橋梁耐震補強 3 箇年 プログラム」, 2003
- (社)日本道路協会:道路橋示方書・同解説 III, IV, V, 2017.11.22
- (社)日本道路協会:既設道路橋の耐震補強に関す る参考資料,2000.8
- 4) 建設省土木研究所:既設橋の耐震補強設計に関する 技術資料, ISSN 1346-7328, 2002.11

図10 baseM=55×10³kN・m時に基部に生じる応力 σ_{zz}分布コンター図